These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 25143973)
1. On the limit cycles of a class of planar singular perturbed differential equations. Wu Y; Zhou J ScientificWorldJournal; 2014; 2014():379897. PubMed ID: 25143973 [TBL] [Abstract][Full Text] [Related]
2. Modelling, singular perturbation and bifurcation analyses of bitrophic food chains. Kooi BW; Poggiale JC Math Biosci; 2018 Jul; 301():93-110. PubMed ID: 29684407 [TBL] [Abstract][Full Text] [Related]
3. Coexisting attractors and chaotic canard explosions in a slow-fast optomechanical system. Marino F; Marin F Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052906. PubMed ID: 23767597 [TBL] [Abstract][Full Text] [Related]
4. Canard-induced complex oscillations in an excitatory network. Köksal Ersöz E; Desroches M; Guillamon A; Rinzel J; Tabak J J Math Biol; 2020 Jun; 80(7):2075-2107. PubMed ID: 32266428 [TBL] [Abstract][Full Text] [Related]
5. Food chain chaos with canard explosion. Deng B Chaos; 2004 Dec; 14(4):1083-92. PubMed ID: 15568923 [TBL] [Abstract][Full Text] [Related]
6. Giant squid-hidden canard: the 3D geometry of the Hodgkin-Huxley model. Rubin J; Wechselberger M Biol Cybern; 2007 Jul; 97(1):5-32. PubMed ID: 17458557 [TBL] [Abstract][Full Text] [Related]
7. Canard explosion of limit cycles in templator models of self-replication mechanisms. Brøns M J Chem Phys; 2011 Apr; 134(14):144105. PubMed ID: 21495740 [TBL] [Abstract][Full Text] [Related]
8. Mixed-mode oscillations and slow manifolds in the self-coupled FitzHugh-Nagumo system. Desroches M; Krauskopf B; Osinga HM Chaos; 2008 Mar; 18(1):015107. PubMed ID: 18377088 [TBL] [Abstract][Full Text] [Related]
9. Higher-dimensional separation principle for the analysis of relaxation oscillations in nonlinear systems: application to a model of HIV infection. Lenbury Y; Ouncharoen R; Tumrasvin N IMA J Math Appl Med Biol; 2000 Sep; 17(3):243-61. PubMed ID: 11103720 [TBL] [Abstract][Full Text] [Related]
10. An elementary model of torus canards. Benes GN; Barry AM; Kaper TJ; Kramer MA; Burke J Chaos; 2011 Jun; 21(2):023131. PubMed ID: 21721773 [TBL] [Abstract][Full Text] [Related]
11. Topological degree in analysis of chaotic behavior in singularly perturbed systems. Pokrovskii A; Zhezherun A Chaos; 2008 Jun; 18(2):023130. PubMed ID: 18601496 [TBL] [Abstract][Full Text] [Related]
12. Eye movement instabilities and nystagmus can be predicted by a nonlinear dynamics model of the saccadic system. Akman OE; Broomhead DS; Abadi RV; Clement RA J Math Biol; 2005 Dec; 51(6):661-94. PubMed ID: 15940536 [TBL] [Abstract][Full Text] [Related]
13. Controlling the onset of Hopf bifurcation in the Hodgkin-Huxley model. Xie Y; Chen L; Kang YM; Aihara K Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jun; 77(6 Pt 1):061921. PubMed ID: 18643314 [TBL] [Abstract][Full Text] [Related]
14. Geometric analysis of the Goldbeter minimal model for the embryonic cell cycle. Kosiuk I; Szmolyan P J Math Biol; 2016 Apr; 72(5):1337-68. PubMed ID: 26100376 [TBL] [Abstract][Full Text] [Related]
15. Canards and mixed-mode oscillations in a forest pest model. Brøns M; Kaasen R Theor Popul Biol; 2010 Jun; 77(4):238-42. PubMed ID: 20188120 [TBL] [Abstract][Full Text] [Related]