These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
143 related articles for article (PubMed ID: 25144150)
1. Discriminate sensing of pyrophosphate using a new tripodal tetramine-based dinuclear Zn(II) complex under an indicator displacement assay approach. Watchasit S; Suktanarak P; Suksai C; Ruangpornvisuti V; Tuntulani T Dalton Trans; 2014 Oct; 43(39):14701-9. PubMed ID: 25144150 [TBL] [Abstract][Full Text] [Related]
2. Highly selective colorimetric sensing pyrophosphate in water by a NBD-phenoxo-bridged dinuclear Zn(II) complex. Yang S; Feng G; Williams NH Org Biomol Chem; 2012 Aug; 10(29):5606-12. PubMed ID: 22733118 [TBL] [Abstract][Full Text] [Related]
3. Pyrophosphate Recognition and Sensing in Water Using Bis[zinc(II)dipicolylamino]-Functionalized Peptides. Jolliffe KA Acc Chem Res; 2017 Sep; 50(9):2254-2263. PubMed ID: 28805368 [TBL] [Abstract][Full Text] [Related]
4. Zn(II) complex of terpyridine for the highly selective fluorescent recognition of pyrophosphate. Liang LJ; Zhao XJ; Huang CZ Analyst; 2012 Feb; 137(4):953-8. PubMed ID: 22183691 [TBL] [Abstract][Full Text] [Related]
5. Aqueous fluorometric and colorimetric sensing of phosphate ions by a fluorescent dinuclear zinc complex. Khatua S; Choi SH; Lee J; Kim K; Do Y; Churchill DG Inorg Chem; 2009 Apr; 48(7):2993-9. PubMed ID: 19265392 [TBL] [Abstract][Full Text] [Related]
6. Phosphates sensing: two polyamino-phenolic zinc receptors able to discriminate and signal phosphates in water. Ambrosi G; Formica M; Fusi V; Giorgi L; Guerri A; Macedi E; Micheloni M; Paoli P; Pontellini R; Rossi P Inorg Chem; 2009 Jul; 48(13):5901-12. PubMed ID: 19432470 [TBL] [Abstract][Full Text] [Related]
7. Polydiacetylene-based colorimetric self-assembled vesicular receptors for biological phosphate ion recognition. Jose DA; Stadlbauer S; König B Chemistry; 2009 Jul; 15(30):7404-12. PubMed ID: 19551781 [TBL] [Abstract][Full Text] [Related]
8. Pyrophosphate-induced reorganization of a reporter-receptor assembly via boronate esterification; a new strategy for the turn-on fluorescent detection of multi-phosphates in aqueous solution. Nonaka A; Horie S; James TD; Kubo Y Org Biomol Chem; 2008 Oct; 6(19):3621-5. PubMed ID: 19082166 [TBL] [Abstract][Full Text] [Related]
9. A Zn2+-specific turn-on fluorescent probe for ratiometric sensing of pyrophosphate in both water and blood serum. Wen J; Geng Z; Yin Y; Zhang Z; Wang Z Dalton Trans; 2011 Mar; 40(9):1984-9. PubMed ID: 21165508 [TBL] [Abstract][Full Text] [Related]
10. Intramolecular indicator displacement assay for anions: supramolecular sensor for glyphosate. Minami T; Liu Y; Akdeniz A; Koutnik P; Esipenko NA; Nishiyabu R; Kubo Y; Anzenbacher P J Am Chem Soc; 2014 Aug; 136(32):11396-401. PubMed ID: 25051138 [TBL] [Abstract][Full Text] [Related]
11. Pyridinium-based fluororeceptors as practical chemosensors for hydrogen pyrophosphate (HP2O7(3-)) in semiaqueous and aqueous environments. Ghosh K; Sarkar AR; Samadder A; Khuda-Bukhsh AR Org Lett; 2012 Sep; 14(17):4314-7. PubMed ID: 22928871 [TBL] [Abstract][Full Text] [Related]
12. Pyrophosphate sensing by a fluorescent Zn2+ bound triazole linked imino-thiophenyl conjugate of calix[4]arene in HEPES buffer medium: spectroscopy, microscopy, and cellular studies. Pathak RK; Tabbasum K; Rai A; Panda D; Rao CP Anal Chem; 2012 Jun; 84(11):5117-23. PubMed ID: 22551314 [TBL] [Abstract][Full Text] [Related]
13. Labile zinc-assisted biological phosphate chemosensing and related molecular logic gating interpretations. Kim K; Ha Y; Kaufman L; Churchill DG Inorg Chem; 2012 Jan; 51(2):928-38. PubMed ID: 22201447 [TBL] [Abstract][Full Text] [Related]
14. Making pyrophosphate visible: the first precipitable and real-time fluorescent sensor for pyrophosphate in aqueous solution. Jiao SY; Li K; Wang X; Huang Z; Pu L; Yu XQ Analyst; 2015 Jan; 140(1):174-81. PubMed ID: 25383605 [TBL] [Abstract][Full Text] [Related]
15. Dizinc enzyme model/complexometric indicator pairs in indicator displacement assays for inorganic phosphates under physiological conditions. Morgan BP; He S; Smith RC Inorg Chem; 2007 Oct; 46(22):9262-6. PubMed ID: 17915862 [TBL] [Abstract][Full Text] [Related]
16. The selectivity of water-based pyrophosphate recognition is tuned by metal substitution in dimetallic receptors. Svane S; Kjeldsen F; McKee V; McKenzie CJ Dalton Trans; 2015 Jul; 44(26):11877-86. PubMed ID: 26057368 [TBL] [Abstract][Full Text] [Related]
17. Phosphate binding by a novel Zn(II) complex featuring a trans-1,2-diaminocyclohexane ligand. Effective anion recognition in water. Francesconi O; Gentili M; Bartoli F; Bencini A; Conti L; Giorgi C; Roelens S Org Biomol Chem; 2015 Feb; 13(6):1860-8. PubMed ID: 25503814 [TBL] [Abstract][Full Text] [Related]
18. Imino-phenolic-pyridyl conjugates of calix[4]arene (L1 and L2) as primary fluorescence switch-on sensors for Zn2+ in solution and in HeLa cells and the recognition of pyrophosphate and ATP by [ZnL2]. Pathak RK; Hinge VK; Rai A; Panda D; Rao CP Inorg Chem; 2012 May; 51(9):4994-5005. PubMed ID: 22519733 [TBL] [Abstract][Full Text] [Related]
19. Zn2+ and pyrophosphate sensing: selective detection in physiological conditions and application in DNA-based estimation of bacterial cell numbers. Datta BK; Mukherjee S; Kar C; Ramesh A; Das G Anal Chem; 2013 Sep; 85(17):8369-75. PubMed ID: 23905654 [TBL] [Abstract][Full Text] [Related]
20. An amide based dipodal Zn(2+) complex: nano-molar detection of HSO(4) (−) in a semi-aqueous system. Fegade U; Sharma H; Tayade K; Attarde S; Singh N; Kuwar A Org Biomol Chem; 2013 Oct; 11(39):6824-8. PubMed ID: 24175330 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]