These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Ability of different scanning protocols of spectral domain optical coherence tomography to diagnose preperimetric glaucoma. Rao HL; Addepalli UK; Chaudhary S; Kumbar T; Senthil S; Choudhari NS; Garudadri CS Invest Ophthalmol Vis Sci; 2013 Nov; 54(12):7252-7. PubMed ID: 24114539 [TBL] [Abstract][Full Text] [Related]
3. Detection of psychophysical and structural injury in eyes with glaucomatous optic neuropathy and normal standard automated perimetry. Bagga H; Feuer WJ; Greenfield DS Arch Ophthalmol; 2006 Feb; 124(2):169-76. PubMed ID: 16476885 [TBL] [Abstract][Full Text] [Related]
4. The Association Between Clinical Features Seen on Fundus Photographs and Glaucomatous Damage Detected on Visual Fields and Optical Coherence Tomography Scans. Alhadeff PA; De Moraes CG; Chen M; Raza AS; Ritch R; Hood DC J Glaucoma; 2017 May; 26(5):498-504. PubMed ID: 28333890 [TBL] [Abstract][Full Text] [Related]
5. Structure/Function relationship and retinal ganglion cells counts to discriminate glaucomatous damages. Distante P; Lombardo S; Verticchio Vercellin AC; Raimondi M; Rolando M; Tinelli C; Milano G BMC Ophthalmol; 2015 Dec; 15():185. PubMed ID: 26711893 [TBL] [Abstract][Full Text] [Related]
6. Comparison of diagnostic ability of standard automated perimetry, short wavelength automated perimetry, retinal nerve fiber layer thickness analysis and ganglion cell layer thickness analysis in early detection of glaucoma. Kalyani VK; Bharucha KM; Goyal N; Deshpande MM Indian J Ophthalmol; 2021 May; 69(5):1108-1112. PubMed ID: 33913843 [TBL] [Abstract][Full Text] [Related]
7. Human Versus Machine: Comparing a Deep Learning Algorithm to Human Gradings for Detecting Glaucoma on Fundus Photographs. Jammal AA; Thompson AC; Mariottoni EB; Berchuck SI; Urata CN; Estrela T; Wakil SM; Costa VP; Medeiros FA Am J Ophthalmol; 2020 Mar; 211():123-131. PubMed ID: 31730838 [TBL] [Abstract][Full Text] [Related]
8. The Influence of Optical Coherence Tomography Measurements of Retinal Nerve Fiber Layer on Decision-Making in Glaucoma Diagnosis. Fu L; Aspinall P; Bennett G; Magidson J; Tatham AJ Curr Eye Res; 2017 Apr; 42(4):575-582. PubMed ID: 27754717 [TBL] [Abstract][Full Text] [Related]
9. Comparison of different spectral domain OCT scanning protocols for diagnosing preperimetric glaucoma. Lisboa R; Paranhos A; Weinreb RN; Zangwill LM; Leite MT; Medeiros FA Invest Ophthalmol Vis Sci; 2013 May; 54(5):3417-25. PubMed ID: 23532529 [TBL] [Abstract][Full Text] [Related]
10. Comparing multifocal VEP and standard automated perimetry in high-risk ocular hypertension and early glaucoma. Fortune B; Demirel S; Zhang X; Hood DC; Patterson E; Jamil A; Mansberger SL; Cioffi GA; Johnson CA Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1173-80. PubMed ID: 17325161 [TBL] [Abstract][Full Text] [Related]
11. Correlation of frequency-doubling perimetry with retinal nerve fiber layer thickness and optic disc size in ocular hypertensives and glaucoma suspects. Kaushik S; Pandav SS; Ichhpujani P; Gupta A J Glaucoma; 2011 Aug; 20(6):366-70. PubMed ID: 20717056 [TBL] [Abstract][Full Text] [Related]
12. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities. Hwang YH; Kim YY; Kim HK; Sohn YH Ophthalmology; 2013 Jul; 120(7):1380-7. PubMed ID: 23541761 [TBL] [Abstract][Full Text] [Related]
13. Relationship between standard automated perimetry and retinal nerve fiber layer parameters obtained with optical coherence tomography. Lopez-Peña MJ; Ferreras A; Larrosa JM; Polo V; Pablo LE J Glaucoma; 2011 Sep; 20(7):422-32. PubMed ID: 21278593 [TBL] [Abstract][Full Text] [Related]
14. Detecting early glaucoma by assessment of retinal nerve fiber layer thickness and visual function. Bowd C; Zangwill LM; Berry CC; Blumenthal EZ; Vasile C; Sanchez-Galeana C; Bosworth CF; Sample PA; Weinreb RN Invest Ophthalmol Vis Sci; 2001 Aug; 42(9):1993-2003. PubMed ID: 11481263 [TBL] [Abstract][Full Text] [Related]
15. Structure-Function Relationship between Flicker-Defined Form Perimetry and Spectral-Domain Optical Coherence Tomography in Glaucoma Suspects. Reznicek L; Muth D; Vogel M; Hirneiß C Curr Eye Res; 2017 Mar; 42(3):418-423. PubMed ID: 27419859 [TBL] [Abstract][Full Text] [Related]
16. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography: analysis of the retinal nerve fiber layer map for glaucoma detection. Leung CK; Lam S; Weinreb RN; Liu S; Ye C; Liu L; He J; Lai GW; Li T; Lam DS Ophthalmology; 2010 Sep; 117(9):1684-91. PubMed ID: 20663563 [TBL] [Abstract][Full Text] [Related]
17. Rates of Retinal Nerve Fiber Layer Loss in Contralateral Eyes of Glaucoma Patients with Unilateral Progression by Conventional Methods. Liu T; Tatham AJ; Gracitelli CP; Zangwill LM; Weinreb RN; Medeiros FA Ophthalmology; 2015 Nov; 122(11):2243-51. PubMed ID: 26383993 [TBL] [Abstract][Full Text] [Related]
19. Retinal nerve fiber layer imaging with spectral-domain optical coherence tomography a study on diagnostic agreement with Heidelberg Retinal Tomograph. Leung CK; Ye C; Weinreb RN; Cheung CY; Qiu Q; Liu S; Xu G; Lam DS Ophthalmology; 2010 Feb; 117(2):267-74. PubMed ID: 19969364 [TBL] [Abstract][Full Text] [Related]
20. Optic disc imaging in perimetrically normal eyes of glaucoma patients with unilateral field loss. Caprioli J; Nouri-Mahdavi K; Law SK; Badalà F Trans Am Ophthalmol Soc; 2006; 104():202-11. PubMed ID: 17471341 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]