These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25144300)

  • 1. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation.
    Namgung S; Kwon MJ; Qafoku NP; Lee G
    Environ Sci Technol; 2014 Sep; 48(18):10760-8. PubMed ID: 25144300
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interaction between chromite and Mn(II/IV) under anoxic, oxic and anoxic-oxic conditions: Dissolution, oxidation and pH dependence.
    Ao M; Sun S; Deng T; Li J; Liu T; Tang Y; Wang S; Qiu R
    J Environ Manage; 2024 Jan; 349():119475. PubMed ID: 37922821
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of oxidation of Cr(III) in aqueous ions, complex ions and insoluble compounds by manganese-bearing mineral (birnessite).
    Dai R; Liu J; Yu C; Sun R; Lan Y; Mao JD
    Chemosphere; 2009 Jul; 76(4):536-41. PubMed ID: 19342077
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manganese(II)-catalyzed and clay-minerals-mediated reduction of chromium(VI) by citrate.
    Sarkar B; Naidu R; Krishnamurti GS; Megharaj M
    Environ Sci Technol; 2013; 47(23):13629-36. PubMed ID: 24195488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chromium(III) oxidation by three poorly crystalline manganese(IV) oxides. 2. Solid phase analyses.
    Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL
    Environ Sci Technol; 2012 Nov; 46(21):11601-9. PubMed ID: 23050862
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Chromium(III) oxidation by three poorly-crystalline manganese(IV) oxides. 1. Chromium(III)-oxidizing capacity.
    Landrot G; Ginder-Vogel M; Livi K; Fitts JP; Sparks DL
    Environ Sci Technol; 2012 Nov; 46(21):11594-600. PubMed ID: 23050871
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extent of oxidation of Cr(III) to Cr(VI) under various conditions pertaining to natural environment.
    Apte AD; Tare V; Bose P
    J Hazard Mater; 2006 Feb; 128(2-3):164-74. PubMed ID: 16297546
    [TBL] [Abstract][Full Text] [Related]  

  • 8. XANES evidence for oxidation of Cr(III) to Cr(VI) by Mn-oxides in a lateritic regolith developed on serpentinized ultramafic rocks of New Caledonia.
    Fandeur D; Juillot F; Morin G; Olivi L; Cognigni A; Webb SM; Ambrosi JP; Fritsch E; Guyot F; Brown GE
    Environ Sci Technol; 2009 Oct; 43(19):7384-90. PubMed ID: 19848150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biological versus mineralogical chromium reduction: potential for reoxidation by manganese oxide.
    Butler EC; Chen L; Hansel CM; Krumholz LR; Elwood Madden AS; Lan Y
    Environ Sci Process Impacts; 2015 Nov; 17(11):1930-40. PubMed ID: 26452013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rates of Cr(VI) Generation from Cr
    Pan C; Liu H; Catalano JG; Qian A; Wang Z; Giammar DE
    Environ Sci Technol; 2017 Nov; 51(21):12416-12423. PubMed ID: 29043792
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic oxidation and adsorption of Cr(III) on iron-manganese nodules under oxic conditions.
    Hai J; Liu L; Tan W; Hao R; Qiu G
    J Hazard Mater; 2020 May; 390():122166. PubMed ID: 32004764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxidative dissolution of Cr(OH)
    Ruiz-Garcia M; Stanberry J; Ribeiro GB; Anagnostopoulos V
    J Environ Sci (China); 2024 May; 139():105-113. PubMed ID: 38105038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Different Pathways for Cr(III) Oxidation: Implications for Cr(VI) Reoccurrence in Reduced Chromite Ore Processing Residue.
    Liu W; Li J; Zheng J; Song Y; Shi Z; Lin Z; Chai L
    Environ Sci Technol; 2020 Oct; 54(19):11971-11979. PubMed ID: 32905702
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reduction and immobilization of chromium(VI) by iron(II)-treated faujasite.
    Kiser JR; Manning BA
    J Hazard Mater; 2010 Feb; 174(1-3):167-74. PubMed ID: 19796874
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Oxidative dissolution of chromium(III) hydroxide at pH 9, 3, and 2 with product inhibition at pH 2.
    Lee G; Hering JG
    Environ Sci Technol; 2005 Jul; 39(13):4921-8. PubMed ID: 16053093
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Natural source of Cr(VI) in soil: The anoxic oxidation of Cr(III) by Mn oxides.
    Ao M; Sun S; Deng T; Zhang F; Liu T; Tang Y; Li J; Wang S; Qiu R
    J Hazard Mater; 2022 Jul; 433():128805. PubMed ID: 35381512
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidation of Cr(III) in tannery sludge to Cr(VI): field observations and theoretical assessment.
    Apte AD; Verma S; Tare V; Bose P
    J Hazard Mater; 2005 May; 121(1-3):215-22. PubMed ID: 15885424
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of pH on the reductive transformation of birnessite by aqueous Mn(II).
    Lefkowitz JP; Rouff AA; Elzinga EJ
    Environ Sci Technol; 2013 Sep; 47(18):10364-71. PubMed ID: 23875781
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hexavalent chromium reduction by tartaric acid and isopropyl alcohol in Mid-Atlantic soils and the role of Mn(III,IV)(hydr)oxides.
    Brose DA; James BR
    Environ Sci Technol; 2013 Nov; 47(22):12985-91. PubMed ID: 24102200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biogeochemical controls on hexavalent chromium formation in estuarine sediments.
    Wadhawan AR; Stone AT; Bouwer EJ
    Environ Sci Technol; 2013 Aug; 47(15):8220-8. PubMed ID: 23802856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.