These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 25144300)

  • 41. Mn-Doped Spinel for Removing Cr(VI) from Aqueous Solutions: Adsorption Characteristics and Mechanisms.
    Lu M; Su Z; Zhang Y; Zhang H; Wang J; Li Q; Jiang T
    Materials (Basel); 2023 Feb; 16(4):. PubMed ID: 36837183
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Cr(III) is indirectly oxidized by the Mn(II)-oxidizing bacterium Bacillus sp. strain SG-1.
    Murray KJ; Tebo BM
    Environ Sci Technol; 2007 Jan; 41(2):528-33. PubMed ID: 17310717
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Hexavalent chromium reduction in solution and in chromite ore processing residue-enriched soil by tartaric Acid with isopropyl alcohol and divalent manganese as co-reductants.
    Brose DA; James BR
    J Environ Qual; 2013; 42(3):766-73. PubMed ID: 23673943
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Kinetic characteristics of Cr(III) oxidation by delta-MnO2].
    Dong CX; Dai RN; Xiong JJ
    Huan Jing Ke Xue; 2010 May; 31(5):1395-401. PubMed ID: 20623882
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Chromium speciation in mildly heated Cr(VI)-doped latosol soil.
    Wei YL; Hsieh HF; Peng YS; Chen KW; Lin CY; Wang HP
    J Synchrotron Radiat; 2010 Mar; 17(2):173-8. PubMed ID: 20157268
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Simultaneous redox conversion of chromium(VI) and arsenic(III) under acidic conditions.
    Wang Z; Bush RT; Sullivan LA; Liu J
    Environ Sci Technol; 2013 Jun; 47(12):6486-92. PubMed ID: 23692180
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Solution structures of chromium(VI) complexes with glutathione and model thiols.
    Levina A; Lay PA
    Inorg Chem; 2004 Jan; 43(1):324-35. PubMed ID: 14704084
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Catalytic oxidation of manganese(II) by multicopper oxidase CueO and characterization of the biogenic Mn oxide.
    Su J; Deng L; Huang L; Guo S; Liu F; He J
    Water Res; 2014 Jun; 56():304-13. PubMed ID: 24699422
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Remediation of hexavalent chromium in contaminated soil by Fe(II)-Al layered double hydroxide.
    He X; Zhong P; Qiu X
    Chemosphere; 2018 Nov; 210():1157-1166. PubMed ID: 30208541
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Photo-oxidation of Cr(III)-citrate complexes forms harmful Cr(VI).
    Dai R; Yu C; Liu J; Lan Y; Deng B
    Environ Sci Technol; 2010 Sep; 44(18):6959-64. PubMed ID: 20715867
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Chromium(VI) removal by siderite (FeCO
    Bibi I; Niazi NK; Choppala G; Burton ED
    Sci Total Environ; 2018 Nov; 640-641():1424-1431. PubMed ID: 30021308
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Synthesis and characterization of a chromium(V) cis-dioxo bis(1,10-phenanthroline) complex and crystal and molecular structures of its chromium(III) precursor.
    Weeks CL; Levina A; Dillon CT; Turner P; Fenton RR; Lay PA
    Inorg Chem; 2004 Nov; 43(24):7844-56. PubMed ID: 15554650
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Influence of dissolved oxygen on aqueous Cr(VI) removal by ferrous ion.
    Singh IB; Singh DR
    Environ Technol; 2002 Dec; 23(12):1347-53. PubMed ID: 12523506
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Spectroscopic investigation of magnetite surface for the reduction of hexavalent chromium.
    Jung Y; Choi J; Lee W
    Chemosphere; 2007 Aug; 68(10):1968-75. PubMed ID: 17400277
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mechanism of the reduction of hexavalent chromium by organo-montmorillonite supported iron nanoparticles.
    Wu P; Li S; Ju L; Zhu N; Wu J; Li P; Dang Z
    J Hazard Mater; 2012 Jun; 219-220():283-8. PubMed ID: 22521796
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Reduction and immobilization of chromate in chromite ore processing residue with nanoscale zero-valent iron.
    Du J; Lu J; Wu Q; Jing C
    J Hazard Mater; 2012 May; 215-216():152-8. PubMed ID: 22417394
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Removal of hexavalent chromium upon interaction with biochar under acidic conditions: mechanistic insights and application.
    Choudhary B; Paul D; Singh A; Gupta T
    Environ Sci Pollut Res Int; 2017 Jul; 24(20):16786-16797. PubMed ID: 28567678
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Treatment of Alkaline Cr(VI)-Contaminated Leachate with an Alkaliphilic Metal-Reducing Bacterium.
    Watts MP; Khijniak TV; Boothman C; Lloyd JR
    Appl Environ Microbiol; 2015 Aug; 81(16):5511-8. PubMed ID: 26048926
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Polyacrylonitrile/manganese acetate composite nanofibers and their catalysis performance on chromium (VI) reduction by oxalic acid.
    Zhang C; Li X; Bian X; Zheng T; Wang C
    J Hazard Mater; 2012 Aug; 229-230():439-45. PubMed ID: 22709851
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Humic Acid on the Removal of Chromium(VI) and the Production of Solids in Iron Electrocoagulation.
    Pan C; Troyer LD; Liao P; Catalano JG; Li W; Giammar DE
    Environ Sci Technol; 2017 Jun; 51(11):6308-6318. PubMed ID: 28530105
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.