These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
299 related articles for article (PubMed ID: 25144429)
1. Energy costs & performance of transtibial amputees & non-amputees during walking & running. Mengelkoch LJ; Kahle JT; Highsmith MJ Int J Sports Med; 2014 Dec; 35(14):1223-8. PubMed ID: 25144429 [TBL] [Abstract][Full Text] [Related]
2. Energy costs and performance of transfemoral amputees and non-amputees during walking and running: A pilot study. Mengelkoch LJ; Kahle JT; Highsmith MJ Prosthet Orthot Int; 2017 Oct; 41(5):484-491. PubMed ID: 27885098 [TBL] [Abstract][Full Text] [Related]
3. Energy storing and return prosthetic feet improve step length symmetry while preserving margins of stability in persons with transtibial amputation. Houdijk H; Wezenberg D; Hak L; Cutti AG J Neuroeng Rehabil; 2018 Sep; 15(Suppl 1):76. PubMed ID: 30255807 [TBL] [Abstract][Full Text] [Related]
4. Differentiation between solid-ankle cushioned heel and energy storage and return prosthetic foot based on step-to-step transition cost. Wezenberg D; Cutti AG; Bruno A; Houdijk H J Rehabil Res Dev; 2014; 51(10):1579-90. PubMed ID: 25860285 [TBL] [Abstract][Full Text] [Related]
5. The effect of prosthetic ankle energy storage and return properties on muscle activity in below-knee amputee walking. Ventura JD; Klute GK; Neptune RR Gait Posture; 2011 Feb; 33(2):220-6. PubMed ID: 21145747 [TBL] [Abstract][Full Text] [Related]
6. The effects of a controlled energy storage and return prototype prosthetic foot on transtibial amputee ambulation. Segal AD; Zelik KE; Klute GK; Morgenroth DC; Hahn ME; Orendurff MS; Adamczyk PG; Collins SH; Kuo AD; Czerniecki JM Hum Mov Sci; 2012 Aug; 31(4):918-31. PubMed ID: 22100728 [TBL] [Abstract][Full Text] [Related]
7. Transtibial amputee gait efficiency: Energy storage and return versus solid ankle cushioned heel prosthetic feet. Gardiner J; Bari AZ; Howard D; Kenney L J Rehabil Res Dev; 2016; 53(6):1133-1138. PubMed ID: 28355033 [TBL] [Abstract][Full Text] [Related]
8. Joint moment and muscle power output characteristics of below knee amputees during running: the influence of energy storing prosthetic feet. Czerniecki JM; Gitter A; Munro C J Biomech; 1991; 24(1):63-75. PubMed ID: 2026634 [TBL] [Abstract][Full Text] [Related]
9. Variability of kinetic variables during gait in unilateral transtibial amputees. Svoboda Z; Janura M; Cabell L; Elfmark M Prosthet Orthot Int; 2012 Jun; 36(2):225-30. PubMed ID: 22440580 [TBL] [Abstract][Full Text] [Related]
10. Energy expenditure during ambulation in dysvascular and traumatic below-knee amputees: a comparison of five prosthetic feet. Torburn L; Powers CM; Guiterrez R; Perry J J Rehabil Res Dev; 1995 May; 32(2):111-9. PubMed ID: 7562650 [TBL] [Abstract][Full Text] [Related]
11. Energy expenditure in people with transtibial amputation walking with crossover and energy storing prosthetic feet: A randomized within-subject study. McDonald CL; Kramer PA; Morgan SJ; Halsne EG; Cheever SM; Hafner BJ Gait Posture; 2018 May; 62():349-354. PubMed ID: 29614468 [TBL] [Abstract][Full Text] [Related]
12. Outdoor dynamic subject-specific evaluation of internal stresses in the residual limb: hydraulic energy-stored prosthetic foot compared to conventional energy-stored prosthetic feet. Portnoy S; Kristal A; Gefen A; Siev-Ner I Gait Posture; 2012 Jan; 35(1):121-5. PubMed ID: 21955382 [TBL] [Abstract][Full Text] [Related]
13. Biomechanical analysis of the influence of prosthetic feet on below-knee amputee walking. Gitter A; Czerniecki JM; DeGroot DM Am J Phys Med Rehabil; 1991 Jun; 70(3):142-8. PubMed ID: 2039616 [TBL] [Abstract][Full Text] [Related]
14. The influence of energy storage and return foot stiffness on walking mechanics and muscle activity in below-knee amputees. Fey NP; Klute GK; Neptune RR Clin Biomech (Bristol); 2011 Dec; 26(10):1025-32. PubMed ID: 21777999 [TBL] [Abstract][Full Text] [Related]
15. Mechanical efficiency during gait of adults with transtibial amputation: a pilot study comparing the SACH, Seattle, and Golden-Ankle prosthetic feet. Prince F; Winter DA; Sjonnensen G; Powell C; Wheeldon RK J Rehabil Res Dev; 1998 Jun; 35(2):177-85. PubMed ID: 9651889 [TBL] [Abstract][Full Text] [Related]
16. Effects of prosthetic feet on metabolic energy expenditure in people with transtibial amputation: A systematic review and meta-analysis. Hafner BJ; Halsne EG; Morgan SJ; Morgenroth DC; Humbert AT PM R; 2022 Sep; 14(9):1099-1115. PubMed ID: 34390623 [TBL] [Abstract][Full Text] [Related]
18. Influence of gait training and prosthetic foot category on external work symmetry during unilateral transtibial amputee gait. Agrawal V; Gailey R; O'Toole C; Gaunaurd I; Finnieston A Prosthet Orthot Int; 2013 Oct; 37(5):396-403. PubMed ID: 23364890 [TBL] [Abstract][Full Text] [Related]
19. A comparative study of conventional and energy-storing prosthetic feet in high-functioning transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J; Pros D Arch Phys Med Rehabil; 2007 Jun; 88(6):801-6. PubMed ID: 17532907 [TBL] [Abstract][Full Text] [Related]
20. A comparative study of oxygen consumption for conventional and energy-storing prosthetic feet in transfemoral amputees. Graham LE; Datta D; Heller B; Howitt J Clin Rehabil; 2008; 22(10-11):896-901. PubMed ID: 18955421 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]