These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 25144637)
21. Insecticidal activity of the protein encoded by the cryV gene of Bacillus thuringiensis kurstaki INA-02. Sasaki J; Asano S; Iizuka T; Bando H; Lay BW; Hastowo S; Powell GK; Yamamoto T Curr Microbiol; 1996 Apr; 32(4):195-200. PubMed ID: 8867460 [TBL] [Abstract][Full Text] [Related]
22. CRISPR/Cas9-mediated knockout of both the PxABCC2 and PxABCC3 genes confers high-level resistance to Bacillus thuringiensis Cry1Ac toxin in the diamondback moth, Plutella xylostella (L.). Guo Z; Sun D; Kang S; Zhou J; Gong L; Qin J; Guo L; Zhu L; Bai Y; Luo L; Zhang Y Insect Biochem Mol Biol; 2019 Apr; 107():31-38. PubMed ID: 30710623 [TBL] [Abstract][Full Text] [Related]
23. The role of TcdB and TccC subunits in secretion of the Photorhabdus Tcd toxin complex. Yang G; Waterfield NR PLoS Pathog; 2013; 9(10):e1003644. PubMed ID: 24098116 [TBL] [Abstract][Full Text] [Related]
24. Isolation, characterization and expression of a novel vegetative insecticidal protein gene of Bacillus thuringiensis. Bhalla R; Dalal M; Panguluri SK; Jagadish B; Mandaokar AD; Singh AK; Kumar PA FEMS Microbiol Lett; 2005 Feb; 243(2):467-72. PubMed ID: 15686851 [TBL] [Abstract][Full Text] [Related]
25. Possible Insecticidal Mechanisms Mediated by Immune-Response-Related Cry-Binding Proteins in the Midgut Juice of Plutella xylostella and Spodoptera exigua. Lu K; Gu Y; Liu X; Lin Y; Yu XQ J Agric Food Chem; 2017 Mar; 65(10):2048-2055. PubMed ID: 28231709 [TBL] [Abstract][Full Text] [Related]
27. Cry Proteins from Bacillus thuringiensis Active against Diamondback Moth and Fall Armyworm. Silva MC; Siqueira HA; Silva LM; Marques EJ; Barros R Neotrop Entomol; 2015 Aug; 44(4):392-401. PubMed ID: 26070631 [TBL] [Abstract][Full Text] [Related]
28. Molecular and insecticidal characterization of a Cry1I protein toxic to insects of the families Noctuidae, Tortricidae, Plutellidae, and Chrysomelidae. Ruiz de Escudero I; Estela A; Porcar M; Martínez C; Oguiza JA; Escriche B; Ferré J; Caballero P Appl Environ Microbiol; 2006 Jul; 72(7):4796-804. PubMed ID: 16820473 [TBL] [Abstract][Full Text] [Related]
29. Dissecting the invasion of Galleria mellonella by Yersinia enterocolitica reveals metabolic adaptations and a role of a phage lysis cassette in insect killing. Sänger PA; Wagner S; Liebler-Tenorio EM; Fuchs TM PLoS Pathog; 2022 Nov; 18(11):e1010991. PubMed ID: 36399504 [TBL] [Abstract][Full Text] [Related]
30. Cry64Ba and Cry64Ca, Two ETX/MTX2-Type Bacillus thuringiensis Insecticidal Proteins Active against Hemipteran Pests. Liu Y; Wang Y; Shu C; Lin K; Song F; Bravo A; Soberón M; Zhang J Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150505 [TBL] [Abstract][Full Text] [Related]
31. The antifeedant, insecticidal and insect growth inhibitory activities of triterpenoid saponins from Clematis aethusifolia Turcz against Plutella xylostella (L.). Tian X; Li Y; Hao N; Su X; Du J; Hu J; Tian X Pest Manag Sci; 2021 Jan; 77(1):455-463. PubMed ID: 32776383 [TBL] [Abstract][Full Text] [Related]
32. Molecular and Functional Analysis of Pore-Forming Toxin Monalysin From Entomopathogenic Bacterium Nonaka S; Salim E; Kamiya K; Hori A; Nainu F; Asri RM; Masyita A; Nishiuchi T; Takeuchi S; Kodera N; Kuraishi T Front Immunol; 2020; 11():520. PubMed ID: 32292407 [No Abstract] [Full Text] [Related]
33. Construction of chimeric insecticidal proteins between the 130-kDa and 135-kDa proteins of Bacillus thuringiensis subsp. aizawai for analysis of structure-function relationship. Nakamura K; Oshie K; Shimizu M; Takada Y; Oeda K; Ohkawa H Agric Biol Chem; 1990 Mar; 54(3):715-24. PubMed ID: 1368534 [TBL] [Abstract][Full Text] [Related]
34. Engineered Bacillus thuringiensis GO33A with broad insecticidal activity against lepidopteran and coleopteran pests. Wang G; Zhang J; Song F; Wu J; Feng S; Huang D Appl Microbiol Biotechnol; 2006 Oct; 72(5):924-30. PubMed ID: 16572346 [TBL] [Abstract][Full Text] [Related]
35. 3D structure of the Yersinia entomophaga toxin complex and implications for insecticidal activity. Landsberg MJ; Jones SA; Rothnagel R; Busby JN; Marshall SD; Simpson RM; Lott JS; Hankamer B; Hurst MR Proc Natl Acad Sci U S A; 2011 Dec; 108(51):20544-9. PubMed ID: 22158901 [TBL] [Abstract][Full Text] [Related]
36. Txp40, a protein from Photorhabdus akhurstii, conferred potent insecticidal activity against the larvae of Helicoverpa armigera, Spodoptera litura and S. exigua. Shankhu PY; Mathur C; Mandal A; Sagar D; Somvanshi VS; Dutta TK Pest Manag Sci; 2020 Jun; 76(6):2004-2014. PubMed ID: 31867818 [TBL] [Abstract][Full Text] [Related]
37. Docking-based generation of antibodies mimicking Cry1A/1B protein binding sites as potential insecticidal agents against diamondback moth (Plutella xylostella). Xie Y; Xu C; Gao M; Zhang X; Lu L; Hu X; Chen W; Jurat-Fuentes JL; Zhu Q; Liu Y; Lin M; Zhong J; Liu X Pest Manag Sci; 2021 Oct; 77(10):4593-4606. PubMed ID: 34092019 [TBL] [Abstract][Full Text] [Related]
38. Optimization of recombinant bacteria expressing dsRNA to enhance insecticidal activity against a lepidopteran insect, Spodoptera exigua. Vatanparast M; Kim Y PLoS One; 2017; 12(8):e0183054. PubMed ID: 28800614 [TBL] [Abstract][Full Text] [Related]
39. Isolation and identification of rhizospheric pseudomonads with insecticidal effects from various crops in Khuzestan Province, Iran. Azarnoosh R; Yarahmadi F; Keshavarz-Tohid V; Rajabpour A J Invertebr Pathol; 2024 Jun; 204():108099. PubMed ID: 38556196 [TBL] [Abstract][Full Text] [Related]
40. Enhanced insecticidal activity of Chilo iridescent virus expressing an insect specific neurotoxin. Nalcacioglu R; Muratoglu H; Yesilyurt A; van Oers MM; Vlak JM; Demirbag Z J Invertebr Pathol; 2016 Jul; 138():104-11. PubMed ID: 27369385 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]