BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

761 related articles for article (PubMed ID: 25144692)

  • 21. A simple post-synthesis conversion approach to Zn(OH)F and the effects of fluorine and hydroxyl on the photodegradation properties of dye wastewater.
    Yang H; Teng F; Gu W; Liu Z; Zhao Y; Zhang A; Liu Z; Teng Y
    J Hazard Mater; 2017 Jul; 333():250-258. PubMed ID: 28363146
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Band alignment of ZnO-based nanorod arrays for enhanced visible light photocatalytic performance.
    Wan J; Al-Baldawy AS; Qu S; Lan J; Ye X; Fei Y; Zhao J; Wang Z; Hong R; Guo S; Huang S; Li S; Kang J
    RSC Adv; 2022 Sep; 12(42):27189-27198. PubMed ID: 36276038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Low-temperature synthesis of ZnO/CdS hierarchical nanostructure for photovoltaic application.
    Chen XY; Ling T; Du XW
    Nanoscale; 2012 Sep; 4(18):5602-7. PubMed ID: 22743779
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assembly of Ag3PO4 nanoparticles on two-dimensional Ag2S sheets as visible-light-driven photocatalysts.
    Ma P; Yu H; Yu Y; Wang W; Wang H; Zhang J; Fu Z
    Phys Chem Chem Phys; 2016 Feb; 18(5):3638-43. PubMed ID: 26753745
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Facile synthesis of Ag@CeO2 core-shell plasmonic photocatalysts with enhanced visible-light photocatalytic performance.
    Wu L; Fang S; Ge L; Han C; Qiu P; Xin Y
    J Hazard Mater; 2015 Dec; 300():93-103. PubMed ID: 26163484
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Oxygen vacancy induced band gap narrowing of ZnO nanostructures by an electrochemically active biofilm.
    Ansari SA; Khan MM; Kalathil S; Nisar A; Lee J; Cho MH
    Nanoscale; 2013 Oct; 5(19):9238-46. PubMed ID: 23938937
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Synthesis of one-dimensional CdS@TiO₂ core-shell nanocomposites photocatalyst for selective redox: the dual role of TiO₂ shell.
    Liu S; Zhang N; Tang ZR; Xu YJ
    ACS Appl Mater Interfaces; 2012 Nov; 4(11):6378-85. PubMed ID: 23131118
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rational design of hetero-dimensional C-ZnO/MoS
    Islam SE; Hang DR; Chen CH; Chou MMC; Liang CT; Sharma KH
    Chemosphere; 2021 Mar; 266():129148. PubMed ID: 33310520
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Photoexcited Properties of Tin Sulfide Nanosheet-Decorated ZnO Nanorod Heterostructures.
    Liang YC; Lung TW; Xu NC
    Nanoscale Res Lett; 2017 Dec; 12(1):258. PubMed ID: 28395476
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Efficient Upconverting Multiferroic Core@Shell Photocatalysts: Visible-to-Near-Infrared Photon Harvesting.
    Zhang J; Huang Y; Jin L; Rosei F; Vetrone F; Claverie JP
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8142-8150. PubMed ID: 28212485
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cascade electronic band structured zinc oxide/bismuth vanadate/three-dimensional ordered macroporous titanium dioxide ternary nanocomposites for enhanced visible light photocatalysis.
    Zhao H; Zalfani M; Li CF; Liu J; Hu ZY; Mahdouani M; Bourguiga R; Li Y; Su BL
    J Colloid Interface Sci; 2019 Mar; 539():585-597. PubMed ID: 30611054
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Surface oxygen vacancy induced solar light activity enhancement of a CdWO
    Yang C; Gao G; Zhang J; Liu R; Fan R; Zhao M; Wang Y; Gan S
    Phys Chem Chem Phys; 2017 Jun; 19(22):14431-14441. PubMed ID: 28530763
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Band alignment and charge transfer predictions of ZnO/ZnX (X = S, Se or Te) interfaces applied to solar cells: a PBE+U theoretical study.
    Flores EM; Gouvea RA; Piotrowski MJ; Moreira ML
    Phys Chem Chem Phys; 2018 Feb; 20(7):4953-4961. PubMed ID: 29387858
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enhanced photovoltaic performance of semiconductor-sensitized ZnO-CdS coupled with graphene oxide as a novel photoactive material.
    Barpuzary D; Qureshi M
    ACS Appl Mater Interfaces; 2013 Nov; 5(22):11673-82. PubMed ID: 24152060
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Efficient ZnO-based visible-light-driven photocatalyst for antibacterial applications.
    Kumar R; Anandan S; Hembram K; Rao TN
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):13138-48. PubMed ID: 25029041
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array.
    Rai SC; Wang K; Ding Y; Marmon JK; Bhatt M; Zhang Y; Zhou W; Wang ZL
    ACS Nano; 2015 Jun; 9(6):6419-27. PubMed ID: 26039323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlled fabrication and photocatalytic properties of a three-dimensional ZnO nanowire/reduced graphene oxide/CdS heterostructure on carbon cloth.
    Wang Y; Wang F; He J
    Nanoscale; 2013 Nov; 5(22):11291-7. PubMed ID: 24096940
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Core-Shell Heterostructured and Visible-Light-Driven Titanoniobate/TiO
    Liu C; Gao X; Han Z; Sun Y; Feng Y; Yu G; Xi X; Zhang Q; Zou Z
    Nanomaterials (Basel); 2019 Oct; 9(10):. PubMed ID: 31652603
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Wave function engineering for ultrafast charge separation and slow charge recombination in type II core/shell quantum dots.
    Zhu H; Song N; Lian T
    J Am Chem Soc; 2011 Jun; 133(22):8762-71. PubMed ID: 21534569
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Quantum dots in photocatalytic applications: efficiently enhancing visible light photocatalytic activity by integrating CdO quantum dots as sensitizers.
    Reshak AH
    Phys Chem Chem Phys; 2017 Sep; 19(36):24915-24927. PubMed ID: 28872182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 39.