These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25144732)
1. Rational design of a fusion protein to exhibit disulfide-mediated logic gate behavior. Choi JH; Ostermeier M ACS Synth Biol; 2015 Apr; 4(4):400-6. PubMed ID: 25144732 [TBL] [Abstract][Full Text] [Related]
2. The interplay between effector binding and allostery in an engineered protein switch. Choi JH; Xiong T; Ostermeier M Protein Sci; 2016 Sep; 25(9):1605-16. PubMed ID: 27272021 [TBL] [Abstract][Full Text] [Related]
3. Non-allosteric enzyme switches possess larger effector-induced changes in thermodynamic stability than their non-switch analogs. Choi JH; San A; Ostermeier M Protein Sci; 2013 Apr; 22(4):475-85. PubMed ID: 23400970 [TBL] [Abstract][Full Text] [Related]
4. Structure of an engineered β-lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. Ke W; Laurent AH; Armstrong MD; Chen Y; Smith WE; Liang J; Wright CM; Ostermeier M; van den Akker F PLoS One; 2012; 7(6):e39168. PubMed ID: 22720063 [TBL] [Abstract][Full Text] [Related]
5. NMR characterization of an engineered domain fusion between maltose binding protein and TEM1 beta-lactamase provides insight into its structure and allosteric mechanism. Wright CM; Majumdar A; Tolman JR; Ostermeier M Proteins; 2010 May; 78(6):1423-30. PubMed ID: 20034108 [TBL] [Abstract][Full Text] [Related]
6. A molecular switch created by in vitro recombination of nonhomologous genes. Guntas G; Mitchell SF; Ostermeier M Chem Biol; 2004 Nov; 11(11):1483-7. PubMed ID: 15555998 [TBL] [Abstract][Full Text] [Related]
7. In vitro recombination of non-homologous genes can result in gene fusions that confer a switching phenotype to cells. Heins RA; Choi JH; Sohka T; Ostermeier M PLoS One; 2011; 6(11):e27302. PubMed ID: 22096548 [TBL] [Abstract][Full Text] [Related]
8. Modulation of effector affinity by hinge region mutations also modulates switching activity in an engineered allosteric TEM1 beta-lactamase switch. Kim JR; Ostermeier M Arch Biochem Biophys; 2006 Feb; 446(1):44-51. PubMed ID: 16384549 [TBL] [Abstract][Full Text] [Related]
9. Modular protein switches derived from antibody mimetic proteins. Nicholes N; Date A; Beaujean P; Hauk P; Kanwar M; Ostermeier M Protein Eng Des Sel; 2016 Feb; 29(2):77-85. PubMed ID: 26637825 [TBL] [Abstract][Full Text] [Related]
11. Design of protein switches based on an ensemble model of allostery. Choi JH; Laurent AH; Hilser VJ; Ostermeier M Nat Commun; 2015 Apr; 6():6968. PubMed ID: 25902417 [TBL] [Abstract][Full Text] [Related]
12. The high-affinity maltose switch MBP317-347 has low affinity for glucose: implications for targeting tumors with metabolically directed enzyme prodrug therapy. Valdes G; Schulte RW; Ostermeier M; Iwamoto KS Chem Biol Drug Des; 2014 Mar; 83(3):266-71. PubMed ID: 24131788 [TBL] [Abstract][Full Text] [Related]
13. Synthetic protein switches: design principles and applications. Stein V; Alexandrov K Trends Biotechnol; 2015 Feb; 33(2):101-10. PubMed ID: 25535088 [TBL] [Abstract][Full Text] [Related]
14. Surface-tethered protein switches. Zayats M; Kanwar M; Ostermeier M; Searson PC Chem Commun (Camb); 2011 Mar; 47(12):3398-400. PubMed ID: 21331440 [TBL] [Abstract][Full Text] [Related]
15. Engineered synthetic antibodies as probes to quantify the energetic contributions of ligand binding to conformational changes in proteins. Mukherjee S; Griffin DH; Horn JR; Rizk SS; Nocula-Lugowska M; Malmqvist M; Kim SS; Kossiakoff AA J Biol Chem; 2018 Feb; 293(8):2815-2828. PubMed ID: 29321208 [TBL] [Abstract][Full Text] [Related]
16. De novo design of protein logic gates. Chen Z; Kibler RD; Hunt A; Busch F; Pearl J; Jia M; VanAernum ZL; Wicky BIM; Dods G; Liao H; Wilken MS; Ciarlo C; Green S; El-Samad H; Stamatoyannopoulos J; Wysocki VH; Jewett MC; Boyken SE; Baker D Science; 2020 Apr; 368(6486):78-84. PubMed ID: 32241946 [TBL] [Abstract][Full Text] [Related]
17. Genetic programs constructed from layered logic gates in single cells. Moon TS; Lou C; Tamsir A; Stanton BC; Voigt CA Nature; 2012 Nov; 491(7423):249-53. PubMed ID: 23041931 [TBL] [Abstract][Full Text] [Related]
18. Network analysis of biochemical logic for noise reduction and stability: a system of three coupled enzymatic and gates. Privman V; Arugula MA; Halámek J; Pita M; Katz E J Phys Chem B; 2009 Apr; 113(15):5301-10. PubMed ID: 19354308 [TBL] [Abstract][Full Text] [Related]
19. Structural analysis of the intracellular domain of (pro)renin receptor fused to maltose-binding protein. Zhang Y; Gao X; Michael Garavito R Biochem Biophys Res Commun; 2011 Apr; 407(4):674-9. PubMed ID: 21420935 [TBL] [Abstract][Full Text] [Related]
20. DARPin-Based Crystallization Chaperones Exploit Molecular Geometry as a Screening Dimension in Protein Crystallography. Batyuk A; Wu Y; Honegger A; Heberling MM; Plückthun A J Mol Biol; 2016 Apr; 428(8):1574-88. PubMed ID: 26975886 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]