These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
90 related articles for article (PubMed ID: 25144782)
1. Size-controlled synthesis of mesoporous palladium nanoparticles as highly active and stable electrocatalysts. Li C; Sato T; Yamauchi Y Chem Commun (Camb); 2014 Oct; 50(79):11753-6. PubMed ID: 25144782 [TBL] [Abstract][Full Text] [Related]
2. Oxygen-Assisted Synthesis of Mesoporous Palladium Nanoparticles as Highly Active Electrocatalysts. Li C; Jiang B; Imura M; Umezawa N; Malgras V; Yamauchi Y Chemistry; 2015 Dec; 21(51):18671-6. PubMed ID: 26577468 [TBL] [Abstract][Full Text] [Related]
3. Large-scale template-free synthesis of ordered mesoporous platinum nanocubes and their electrocatalytic properties. Cao Y; Yang Y; Shan Y; Fu C; Long NV; Huang Z; Guo X; Nogami M Nanoscale; 2015 Dec; 7(46):19461-7. PubMed ID: 26399438 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of mesoporous Pt nanoparticles with uniform particle size from aqueous surfactant solutions toward highly active electrocatalysts. Wang L; Yamauchi Y Chemistry; 2011 Aug; 17(32):8810-5. PubMed ID: 21732437 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of olive-shaped mesoporous platinum nanoparticles (MPNs) with a hard-templating method using mesoporous silica (SBA-15). Wang H; Imura M; Nemoto Y; Park SE; Yamauchi Y Chem Asian J; 2012 Apr; 7(4):802-8. PubMed ID: 22298380 [TBL] [Abstract][Full Text] [Related]
6. Hollow palladium nanospheres with porous shells supported on graphene as enhanced electrocatalysts for formic acid oxidation. Wang B; Yang J; Wang L; Wang R; Tian C; Jiang B; Tian M; Fu H Phys Chem Chem Phys; 2013 Nov; 15(44):19353-9. PubMed ID: 24121733 [TBL] [Abstract][Full Text] [Related]
7. A universal approach to the preparation of colloidal mesoporous platinum nanoparticles with controlled particle sizes in a wide range from 20 nm to 200 nm. Li C; Imura M; Yamauchi Y Phys Chem Chem Phys; 2014 May; 16(19):8787-90. PubMed ID: 24695823 [TBL] [Abstract][Full Text] [Related]
8. Size-controlled synthesis of colloidal platinum nanoparticles and their activity for the electrocatalytic oxidation of carbon monoxide. Tang Z; Geng D; Lu G J Colloid Interface Sci; 2005 Jul; 287(1):159-66. PubMed ID: 15914161 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of mesoporous platinum-palladium alloy films by electrochemical plating in aqueous surfactant solutions. Wang H; Yamauchi Y Chem Asian J; 2012 Sep; 7(9):2133-8. PubMed ID: 22733608 [TBL] [Abstract][Full Text] [Related]
10. Controllable self-assembly of Pd nanowire networks as highly active electrocatalysts for direct formic acid fuel cells. Wang S; Wang X; Jiang SP Nanotechnology; 2008 Nov; 19(45):455602. PubMed ID: 21832779 [TBL] [Abstract][Full Text] [Related]
11. Sub-150 nm mesoporous silica nanoparticles with tunable pore sizes and well-ordered mesostructure for protein encapsulation. Gu J; Huang K; Zhu X; Li Y; Wei J; Zhao W; Liu C; Shi J J Colloid Interface Sci; 2013 Oct; 407():236-42. PubMed ID: 23866201 [TBL] [Abstract][Full Text] [Related]
12. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid. Zhou WP; Lewera A; Larsen R; Masel RI; Bagus PS; Wieckowski A J Phys Chem B; 2006 Jul; 110(27):13393-8. PubMed ID: 16821860 [TBL] [Abstract][Full Text] [Related]
13. Aggregation-free gold nanoparticles in ordered mesoporous carbons: toward highly active and stable heterogeneous catalysts. Wang S; Zhao Q; Wei H; Wang JQ; Cho M; Cho HS; Terasaki O; Wan Y J Am Chem Soc; 2013 Aug; 135(32):11849-60. PubMed ID: 23865622 [TBL] [Abstract][Full Text] [Related]
14. Amine-borane assisted synthesis of wavy palladium nanorods on graphene as efficient catalysts for formic acid oxidation. Du C; Liao Y; Hua X; Luo W; Chen S; Cheng G Chem Commun (Camb); 2014 Nov; 50(85):12843-6. PubMed ID: 25208822 [TBL] [Abstract][Full Text] [Related]
15. Poly-l-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution. Zhang XF; Chen Y; Zhang L; Wang AJ; Wu LJ; Wang ZG; Feng JJ J Colloid Interface Sci; 2018 Apr; 516():325-331. PubMed ID: 29408120 [TBL] [Abstract][Full Text] [Related]
16. Synthesis of monodispersed palladium nanoparticles using tannic acid and its optical non-linearity. Meena Kumari M; Aromal SA; Philip D Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():130-3. PubMed ID: 23257340 [TBL] [Abstract][Full Text] [Related]
17. Ordered mesoporous platinum@graphitic carbon embedded nanophase as a highly active, stable, and methanol-tolerant oxygen reduction electrocatalyst. Wu Z; Lv Y; Xia Y; Webley PA; Zhao D J Am Chem Soc; 2012 Feb; 134(4):2236-45. PubMed ID: 22257228 [TBL] [Abstract][Full Text] [Related]
18. Mesoporous Ti(0.5)Cr(0.5)N supported PdAg nanoalloy as highly active and stable catalysts for the electro-oxidation of formic acid and methanol. Cui Z; Yang M; DiSalvo FJ ACS Nano; 2014 Jun; 8(6):6106-13. PubMed ID: 24836603 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of cubic and spherical Pd nanoparticles on graphene and their electrocatalytic performance in the oxidation of formic acid. Yang S; Shen C; Tian Y; Zhang X; Gao HJ Nanoscale; 2014 Nov; 6(21):13154-62. PubMed ID: 25251546 [TBL] [Abstract][Full Text] [Related]
20. Tunable Concave Surface Features of Mesoporous Palladium Nanocrystals Prepared from Supramolecular Micellar Templates. Iqbal M; Kim Y; Saputro AG; Shukri G; Yuliarto B; Lim H; Nara H; Alothman AA; Na J; Bando Y; Yamauchi Y ACS Appl Mater Interfaces; 2020 Nov; 12(46):51357-51365. PubMed ID: 33146017 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]