These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
279 related articles for article (PubMed ID: 25144838)
21. Beneficial compressive strain for oxygen reduction reaction on Pt (111) surface. Kattel S; Wang G J Chem Phys; 2014 Sep; 141(12):124713. PubMed ID: 25273467 [TBL] [Abstract][Full Text] [Related]
22. Enhanced stability and activity of Pt-Y alloy catalysts for electrocatalytic oxygen reduction. Jong Yoo S; Kim SK; Jeon TY; Jun Hwang S; Lee JG; Lee SC; Lee KS; Cho YH; Sung YE; Lim TH Chem Commun (Camb); 2011 Nov; 47(41):11414-6. PubMed ID: 21625678 [TBL] [Abstract][Full Text] [Related]
23. Relating structural aspects of bimetallic Pt(3)Cr(1)/C nanoparticles to their electrocatalytic activity, stability, and selectivity in the oxygen reduction reaction. Taufany F; Pan CJ; Chou HL; Rick J; Chen YS; Liu DG; Lee JF; Tang MT; Hwang BJ Chemistry; 2011 Sep; 17(38):10724-35. PubMed ID: 21837730 [TBL] [Abstract][Full Text] [Related]
24. Carbon-supported Pt^Ag nanostructures as cathode catalysts for oxygen reduction reaction. Feng YY; Zhang GR; Ma JH; Liu G; Xu BQ Phys Chem Chem Phys; 2011 Mar; 13(9):3863-72. PubMed ID: 21210027 [TBL] [Abstract][Full Text] [Related]
25. Synthesis of Chemically Ordered Pt Jung C; Lee C; Bang K; Lim J; Lee H; Ryu HJ; Cho E; Lee HM ACS Appl Mater Interfaces; 2017 Sep; 9(37):31806-31815. PubMed ID: 28849644 [TBL] [Abstract][Full Text] [Related]
26. Interfacial Structure of PtNi Surface Alloy on Pt(111) Electrode for Oxygen Reduction Reaction. Kumeda T; Otsuka N; Tajiri H; Sakata O; Hoshi N; Nakamura M ACS Omega; 2017 May; 2(5):1858-1863. PubMed ID: 31457547 [TBL] [Abstract][Full Text] [Related]
27. Pt/Cr and Pt/Ni catalysts for oxygen reduction reaction: to alloy or not to alloy? Escaño MC; Gyenge E; Nakanishi H; Kasai H J Nanosci Nanotechnol; 2011 Apr; 11(4):2944-51. PubMed ID: 21776658 [TBL] [Abstract][Full Text] [Related]
29. A band dispersion mechanism for Pt alloy compositional tuning of linear bound CO stretching frequencies. Dimakis N; Iddir H; Díaz-Morales RR; Liu R; Bunker G; Chung EH; Smotkin ES J Phys Chem B; 2005 Feb; 109(5):1839-48. PubMed ID: 16851166 [TBL] [Abstract][Full Text] [Related]
30. Exploring fuel cell cathode materials using ab initio high throughput calculations and validation using carbon supported Pt alloy catalysts. Sarwar M; Gavartin JL; Martinez Bonastre A; Garcia Lopez S; Thompsett D; Ball SC; Krzystala A; Goldbeck G; French SA Phys Chem Chem Phys; 2020 Mar; 22(10):5902-5914. PubMed ID: 32109268 [TBL] [Abstract][Full Text] [Related]
31. Stabilization of Pt monolayer catalysts under harsh conditions of fuel cells. Zhang X; Yu S; Qiao L; Zheng W; Liu P J Chem Phys; 2015 May; 142(19):194710. PubMed ID: 26001476 [TBL] [Abstract][Full Text] [Related]
32. Activity Trends of Binary Silver Alloy Nanocatalysts for Oxygen Reduction Reaction in Alkaline Media. Wu X; Chen F; Zhang N; Lei Y; Jin Y; Qaseem A; Johnston RL Small; 2017 Apr; 13(15):. PubMed ID: 28151572 [TBL] [Abstract][Full Text] [Related]
33. Pt skin on AuCu intermetallic substrate: a strategy to maximize Pt utilization for fuel cells. Wang G; Huang B; Xiao L; Ren Z; Chen H; Wang D; Abruña HD; Lu J; Zhuang L J Am Chem Soc; 2014 Jul; 136(27):9643-9. PubMed ID: 24936859 [TBL] [Abstract][Full Text] [Related]
34. Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr, Co, and Fe) alloys prepared by nanocapsule method. Yano H; Kataoka M; Yamashita H; Uchida H; Watanabe M Langmuir; 2007 May; 23(11):6438-45. PubMed ID: 17441742 [TBL] [Abstract][Full Text] [Related]
35. Tuning the ORR activity of Pt-based Ti Zhang X; Zhang Y; Cheng C; Yang Z; Hermansson K Nanoscale; 2020 Jun; 12(23):12497-12507. PubMed ID: 32496491 [TBL] [Abstract][Full Text] [Related]
36. Composition-controlled PtCo alloy nanocubes with tuned electrocatalytic activity for oxygen reduction. Choi SI; Lee SU; Kim WY; Choi R; Hong K; Nam KM; Han SW; Park JT ACS Appl Mater Interfaces; 2012 Nov; 4(11):6228-34. PubMed ID: 23106417 [TBL] [Abstract][Full Text] [Related]
37. Experimental and theoretical investigation of the stability of Pt-3d-Pt(111) bimetallic surfaces under oxygen environment. Menning CA; Hwu HH; Chen JG J Phys Chem B; 2006 Aug; 110(31):15471-7. PubMed ID: 16884269 [TBL] [Abstract][Full Text] [Related]
38. First principles computational study on the electrochemical stability of Pt-Co nanocatalysts. Noh SH; Seo MH; Seo JK; Fischer P; Han B Nanoscale; 2013 Sep; 5(18):8625-33. PubMed ID: 23897215 [TBL] [Abstract][Full Text] [Related]
39. Stability issues in Pd-based catalysts: the role of surface Pt in improving the stability and oxygen reduction reaction (ORR) activity. Singh RK; Rahul R; Neergat M Phys Chem Chem Phys; 2013 Aug; 15(31):13044-51. PubMed ID: 23817297 [TBL] [Abstract][Full Text] [Related]
40. A study of electronic structures of Pt3M (M=Ti,V,Cr,Fe,Co,Ni) polycrystalline alloys with valence-band photoemission spectroscopy. Mun BS; Watanabe M; Rossi M; Stamenkovic V; Markovic NM; Ross PN J Chem Phys; 2005 Nov; 123(20):204717. PubMed ID: 16351303 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]