These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25144896)

  • 41. Optimized Synthesis of Nitrogen and Phosphorus Dual-Doped Coal-Based Carbon Fiber Supported Pd Catalyst with Enhanced Activities for Formic Acid Electrooxidation.
    Lou M; Wang R; Zhang J; Tang X; Wang L; Guo Y; Jia D; Shi H; Yang L; Wang X; Sun Z; Wang T; Huang Y
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6431-6441. PubMed ID: 30640425
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Benchmarking Catalysts for Formic Acid/Formate Electrooxidation.
    Folkman SJ; González-Cobos J; Giancola S; Sánchez-Molina I; Galán-Mascarós JR
    Molecules; 2021 Aug; 26(16):. PubMed ID: 34443343
    [TBL] [Abstract][Full Text] [Related]  

  • 43. In situ surface-enhanced Raman spectroscopic study of formic acid electrooxidation on spontaneously deposited platinum on gold.
    Muralidharan R; McIntosh M; Li X
    Phys Chem Chem Phys; 2013 Jun; 15(24):9716-25. PubMed ID: 23674096
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Trimetallic Synergy in Intermetallic PtSnBi Nanoplates Boosts Formic Acid Oxidation.
    Luo S; Chen W; Cheng Y; Song X; Wu Q; Li L; Wu X; Wu T; Li M; Yang Q; Deng K; Quan Z
    Adv Mater; 2019 Oct; 31(40):e1903683. PubMed ID: 31423678
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Boron-Doped PdCuAu Nanospine Assembly as an Efficient Electrocatalyst toward Formic Acid Oxidation.
    Wang H; Qian X; Liu S; Yin S; Xu Y; Li X; Wang Z; Wang L
    Chemistry; 2020 Feb; 26(11):2493-2498. PubMed ID: 31867812
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Poly-l-lysine mediated synthesis of palladium nanochain networks and nanodendrites as highly efficient electrocatalysts for formic acid oxidation and hydrogen evolution.
    Zhang XF; Chen Y; Zhang L; Wang AJ; Wu LJ; Wang ZG; Feng JJ
    J Colloid Interface Sci; 2018 Apr; 516():325-331. PubMed ID: 29408120
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct functionalization of M-C (M = Pt(II), Pd(II)) bonds using environmentally benign oxidants, O2 and H2O2.
    Vedernikov AN
    Acc Chem Res; 2012 Jun; 45(6):803-13. PubMed ID: 22087633
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Atomic engineering of platinum alloy surfaces.
    Li T; Bagot PA; Marquis EA; Edman Tsang SC; Smith GD
    Ultramicroscopy; 2013 Sep; 132():205-11. PubMed ID: 23276526
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Platinum-modulated cobalt nanocatalysts for low-temperature aqueous-phase Fischer-Tropsch synthesis.
    Wang H; Zhou W; Liu JX; Si R; Sun G; Zhong MQ; Su HY; Zhao HB; Rodriguez JA; Pennycook SJ; Idrobo JC; Li WX; Kou Y; Ma D
    J Am Chem Soc; 2013 Mar; 135(10):4149-58. PubMed ID: 23428163
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Catalyst Electrodes with PtCu Nanowire Arrays In Situ Grown on Gas Diffusion Layers for Direct Formic Acid Fuel Cells.
    Li Y; Yan Y; He Y; Du S
    ACS Appl Mater Interfaces; 2022 Mar; 14(9):11457-11464. PubMed ID: 35201741
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Nanoporous PdNi Alloy Nanowires As Highly Active Catalysts for the Electro-Oxidation of Formic Acid.
    Du C; Chen M; Wang W; Yin G
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):105-9. PubMed ID: 21192691
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Electrocatalytic activity of Pd-Co bimetallic mixtures for formic acid oxidation studied by scanning electrochemical microscopy.
    Jung C; Sánchez-Sánchez CM; Lin CL; Rodríguez-López J; Bard AJ
    Anal Chem; 2009 Aug; 81(16):7003-8. PubMed ID: 19627121
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Size effects in electronic and catalytic properties of unsupported palladium nanoparticles in electrooxidation of formic acid.
    Zhou WP; Lewera A; Larsen R; Masel RI; Bagus PS; Wieckowski A
    J Phys Chem B; 2006 Jul; 110(27):13393-8. PubMed ID: 16821860
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Efficient Dehydrogenation of Formic Acid over Binary Palladium-Phosphorous Alloy Nanoclusters on N-Doped Carbon.
    Zhu L; Liang Y; Sun L; Wang J; Xu D
    Inorg Chem; 2021 Jul; 60(14):10707-10714. PubMed ID: 34196533
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Porous three-dimensional network of Pd-Cu aerogel toward formic acid oxidation.
    Douk AS; Farsadrooh M; Damanigol F; Moghaddam AA; Saravani H; Noroozifar M
    RSC Adv; 2018 Jun; 8(42):23539-23545. PubMed ID: 35540256
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Dehydrogenation of Formic Acid at Room Temperature: Boosting Palladium Nanoparticle Efficiency by Coupling with Pyridinic-Nitrogen-Doped Carbon.
    Bi QY; Lin JD; Liu YM; He HY; Huang FQ; Cao Y
    Angew Chem Int Ed Engl; 2016 Sep; 55(39):11849-53. PubMed ID: 27552650
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Highly Active and Durable Ultrasmall Pd Nanocatalyst Encapsulated in Ultrathin Silica Layers by Selective Deposition for Formic Acid Oxidation.
    Shan J; Lei Z; Wu W; Tan Y; Cheng N; Sun X
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43130-43137. PubMed ID: 31652044
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Dendritic defect-rich palladium-copper-cobalt nanoalloys as robust multifunctional non-platinum electrocatalysts for fuel cells.
    Li C; Yuan Q; Ni B; He T; Zhang S; Long Y; Gu L; Wang X
    Nat Commun; 2018 Sep; 9(1):3702. PubMed ID: 30209252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Bimetallic Ni-Pt nanocatalysts for selective decomposition of hydrazine in aqueous solution to hydrogen at room temperature for chemical hydrogen storage.
    Singh SK; Xu Q
    Inorg Chem; 2010 Jul; 49(13):6148-52. PubMed ID: 20518491
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bimetallic Pt-Au nanocatalysts electrochemically deposited on graphene and their electrocatalytic characteristics towards oxygen reduction and methanol oxidation.
    Hu Y; Zhang H; Wu P; Zhang H; Zhou B; Cai C
    Phys Chem Chem Phys; 2011 Mar; 13(9):4083-94. PubMed ID: 21229152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.