These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 25144915)

  • 1. Preparation and validation of low cost microfluidic chips using a shrinking approach.
    Focaroli S; Mazzitelli S; Falconi M; Luca G; Nastruzzi C
    Lab Chip; 2014 Oct; 14(20):4007-16. PubMed ID: 25144915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of monodisperse, large-sized, functional biopolymeric microspheres using a low-cost and facile microfluidic device.
    Zhu L; Li Y; Zhang Q; Wang H; Zhu M
    Biomed Microdevices; 2010 Feb; 12(1):169-77. PubMed ID: 19924539
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On-demand preparation of quantum dot-encoded microparticles using a droplet microfluidic system.
    Ji XH; Cheng W; Guo F; Liu W; Guo SS; He ZK; Zhao XZ
    Lab Chip; 2011 Aug; 11(15):2561-8. PubMed ID: 21687836
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Size-controlled fabrication of polydiacetylene-embedded microfibers on a microfluidic chip.
    Yoo I; Song S; Yoon B; Kim JM
    Macromol Rapid Commun; 2012 Aug; 33(15):1256-61. PubMed ID: 22528762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chitosan/agarose hydrogels: cooperative properties and microfluidic preparation.
    Zamora-Mora V; Velasco D; Hernández R; Mijangos C; Kumacheva E
    Carbohydr Polym; 2014 Oct; 111():348-55. PubMed ID: 25037360
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Packaging commercial CMOS chips for lab on a chip integration.
    Datta-Chaudhuri T; Abshire P; Smela E
    Lab Chip; 2014 May; 14(10):1753-66. PubMed ID: 24682025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Production of low cost microfluidic chips by a "shrinking" approach: applications to emulsion and microparticle production.
    Capretto L; Focaroli S; Zhang XL; Mazzitelli S; Nastruzzi C
    J Control Release; 2010 Nov; 148(1):e26-8. PubMed ID: 21529604
    [No Abstract]   [Full Text] [Related]  

  • 8. Shape-controlled production of biodegradable calcium alginate gel microparticles using a novel microfluidic device.
    Liu K; Ding HJ; Liu J; Chen Y; Zhao XZ
    Langmuir; 2006 Oct; 22(22):9453-7. PubMed ID: 17042568
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phospholipid Polymer Biointerfaces for Lab-on-a-Chip Devices.
    Xu Y; Takai M; Ishihara K
    Ann Biomed Eng; 2010 Jun; 38(6):1938-53. PubMed ID: 20358288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of cell-laden alginate hollow fibers using microfluidic chips and microvascularized tissue-engineering applications.
    Lee KH; Shin SJ; Park Y; Lee SH
    Small; 2009 Jun; 5(11):1264-8. PubMed ID: 19296560
    [No Abstract]   [Full Text] [Related]  

  • 11. Biocompatible "click" wafer bonding for microfluidic devices.
    Saharil F; Carlborg CF; Haraldsson T; van der Wijngaart W
    Lab Chip; 2012 Sep; 12(17):3032-5. PubMed ID: 22760578
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A cell-laden microfluidic hydrogel.
    Ling Y; Rubin J; Deng Y; Huang C; Demirci U; Karp JM; Khademhosseini A
    Lab Chip; 2007 Jun; 7(6):756-62. PubMed ID: 17538718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microfluidic chip accomplishing self-fluid replacement using only capillary force and its bioanalytical application.
    Chung KH; Hong JW; Lee DS; Yoon HC
    Anal Chim Acta; 2007 Feb; 585(1):1-10. PubMed ID: 17386640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in low-cost microfluidic platforms for diagnostic applications.
    Tomazelli Coltro WK; Cheng CM; Carrilho E; de Jesus DP
    Electrophoresis; 2014 Aug; 35(16):2309-24. PubMed ID: 24668896
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophobic modification of polycarbonate for reproducible and stable formation of biocompatible microparticles.
    Jankowski P; Ogonczyk D; Kosinski A; Lisowski W; Garstecki P
    Lab Chip; 2011 Feb; 11(4):748-52. PubMed ID: 21132214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New non-covalent strategies for stable surface treatment of thermoplastic chips.
    Perez-Toralla K; Champ J; Mohamadi MR; Braun O; Malaquin L; Viovy JL; Descroix S
    Lab Chip; 2013 Nov; 13(22):4409-18. PubMed ID: 24061577
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A lithography-free procedure for fabricating three-dimensional microchannels using hydrogel molds.
    Hirama H; Odera T; Torii T; Moriguchi H
    Biomed Microdevices; 2012 Aug; 14(4):689-97. PubMed ID: 22450656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Agarose-based microfluidic device for point-of-care concentration and detection of pathogen.
    Li Y; Yan X; Feng X; Wang J; Du W; Wang Y; Chen P; Xiong L; Liu BF
    Anal Chem; 2014 Nov; 86(21):10653-9. PubMed ID: 25264815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Screen printing of solder resist as master substrates for fabrication of multi-level microfluidic channels and flask-shaped microstructures for cell-based applications.
    Yue W; Li CW; Xu T; Yang M
    Biosens Bioelectron; 2013 Mar; 41():675-83. PubMed ID: 23122749
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Gel-based optical waveguides with live cell encapsulation and integrated microfluidics.
    Jain A; Yang AH; Erickson D
    Opt Lett; 2012 May; 37(9):1472-4. PubMed ID: 22555708
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.