These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 25145186)

  • 1. Studying the demand-side vis-à-vis the supply-side of urban water systems--case study of Oslo, Norway.
    Venkatesh G; Brattebø H
    Environ Technol; 2014; 35(17-20):2322-33. PubMed ID: 25145186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic metabolism modelling of urban water services--demonstrating effectiveness as a decision-support tool for Oslo, Norway.
    Venkatesh G; Sægrov S; Brattebø H
    Water Res; 2014 Sep; 61():19-33. PubMed ID: 24880242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Environmental impact analysis of chemicals and energy consumption in wastewater treatment plants: case study of Oslo, Norway.
    Venkatesh G; Brattebø H
    Water Sci Technol; 2011; 63(5):1018-31. PubMed ID: 21411954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The diverse environmental burden of city-scale urban water systems.
    Lane JL; de Haas DW; Lant PA
    Water Res; 2015 Sep; 81():398-415. PubMed ID: 26164544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Life-cycle energy impacts for adapting an urban water supply system to droughts.
    Lam KL; Stokes-Draut JR; Horvath A; Lane JL; Kenway SJ; Lant PA
    Water Res; 2017 Dec; 127():139-149. PubMed ID: 29035767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of water-energy trajectories of two major regions experiencing water shortage.
    Lam KL; Lant PA; O'Brien KR; Kenway SJ
    J Environ Manage; 2016 Oct; 181():403-412. PubMed ID: 27395015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Semi-centralised supply and treatment systems for (fast growing) urban areas.
    Weber B; Cornel P; Wagner M
    Water Sci Technol; 2007; 55(1-2):349-56. PubMed ID: 17305159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. City-scale analysis of water-related energy identifies more cost-effective solutions.
    Lam KL; Kenway SJ; Lant PA
    Water Res; 2017 Feb; 109():287-298. PubMed ID: 27914259
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Scaling of Energy, Water, and Waste Flows in China's Prefecture-Level and Provincial Cities.
    Qu S; Yu K; Hu Y; Zhou C; Xu M
    Environ Sci Technol; 2023 Jan; 57(2):1186-1197. PubMed ID: 36580422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Holistic Analysis of Urban Water Systems in the Greater Cincinnati Region: (1) Life Cycle Assessment and Cost Implications.
    Xue X; Cashman S; Gaglione A; Mosley J; Weiss L; Ma XC; Cashdollar J; Garland J
    Water Res X; 2019 Feb; 2():. PubMed ID: 30882067
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-Carbon Urban Water Systems: Opportunities beyond Water and Wastewater Utilities?
    Lam KL; van der Hoek JP
    Environ Sci Technol; 2020 Dec; 54(23):14854-14861. PubMed ID: 33170666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic load shifting for the abatement of GHG emissions, power demand, energy use, and costs in metropolitan hybrid wastewater treatment systems.
    Reifsnyder S; Cecconi F; Rosso D
    Water Res; 2021 Jul; 200():117224. PubMed ID: 34029871
    [TBL] [Abstract][Full Text] [Related]  

  • 13. WaLA, a versatile model for the life cycle assessment of urban water systems: Formalism and framework for a modular approach.
    Loubet P; Roux P; Bellon-Maurel V
    Water Res; 2016 Jan; 88():69-82. PubMed ID: 26474151
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Confronting limitations: new solutions required for urban water management in Kunming City.
    Huang DB; Bader HP; Scheidegger R; Schertenleib R; Gujer W
    J Environ Manage; 2007 Jul; 84(1):49-61. PubMed ID: 16857309
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Urban water infrastructure optimization to reduce environmental impacts and costs.
    Lim SR; Suh S; Kim JH; Park HS
    J Environ Manage; 2010; 91(3):630-7. PubMed ID: 19939551
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of climate change and decentralization in urban water services: A dynamic energy-water nexus analysis.
    Khalkhali M; Dilkina B; Mo W
    Water Res; 2021 Dec; 207():117830. PubMed ID: 34763280
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative LCA of decentralized wastewater treatment alternatives for non-potable urban reuse.
    Opher T; Friedler E
    J Environ Manage; 2016 Nov; 182():464-476. PubMed ID: 27526084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Finding new sources of water for semi-arid cities in unlikely places.
    Butler E; Howell N; Guerrero B
    Environ Sci Pollut Res Int; 2020 Feb; 27(6):6112-6125. PubMed ID: 31865568
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Life cycle assessment of forecasting scenarios for urban water management: A first implementation of the WaLA model on Paris suburban area.
    Loubet P; Roux P; Guérin-Schneider L; Bellon-Maurel V
    Water Res; 2016 Mar; 90():128-140. PubMed ID: 26724447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Environmental synergies in decentralized wastewater treatment at a hotel resort.
    Estévez S; Feijoo G; Moreira MT
    J Environ Manage; 2022 Sep; 317():115392. PubMed ID: 35636106
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.