These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
186 related articles for article (PubMed ID: 25145331)
1. First evidence of chitin in calcified coralline algae: new insights into the calcification process of Clathromorphum compactum. Rahman MA; Halfar J Sci Rep; 2014 Aug; 4():6162. PubMed ID: 25145331 [TBL] [Abstract][Full Text] [Related]
2. The role of chitin-rich skeletal organic matrix on the crystallization of calcium carbonate in the crustose coralline alga Leptophytum foecundum. Rahman MA; Halfar J; Adey WH; Nash M; Paulo C; Dittrich M Sci Rep; 2019 Aug; 9(1):11869. PubMed ID: 31417166 [TBL] [Abstract][Full Text] [Related]
3. Coralline algal calcification: A morphological and process-based understanding. Nash MC; Diaz-Pulido G; Harvey AS; Adey W PLoS One; 2019; 14(9):e0221396. PubMed ID: 31557180 [TBL] [Abstract][Full Text] [Related]
4. Coralline algae (Rhodophyta) in a changing world: integrating ecological, physiological, and geochemical responses to global change. McCoy SJ; Kamenos NA J Phycol; 2015 Feb; 51(1):6-24. PubMed ID: 26986255 [TBL] [Abstract][Full Text] [Related]
5. Coralline algae elevate pH at the site of calcification under ocean acidification. Cornwall CE; Comeau S; McCulloch MT Glob Chang Biol; 2017 Oct; 23(10):4245-4256. PubMed ID: 28370806 [TBL] [Abstract][Full Text] [Related]
6. Global assessment of coralline algae mineralogy points to high vulnerability of Southwestern Atlantic reefs and rhodolith beds to ocean acidification. de Carvalho RT; Rocha GM; Karez CS; da Gama Bahia R; Pereira RC; Bastos AC; Salgado LT Sci Rep; 2022 Jun; 12(1):9589. PubMed ID: 35688967 [TBL] [Abstract][Full Text] [Related]
7. Biomineralization of calcium carbonate in the cell wall of Lithothamnion crispatum (Hapalidiales, Rhodophyta): correlation between the organic matrix and the mineral phase. de Carvalho RT; Salgado LT; Amado Filho GM; Leal RN; Werckmann J; Rossi AL; Campos APC; Karez CS; Farina M J Phycol; 2017 Jun; 53(3):642-651. PubMed ID: 28258584 [TBL] [Abstract][Full Text] [Related]
8. Resistance of corals and coralline algae to ocean acidification: physiological control of calcification under natural pH variability. Cornwall CE; Comeau S; DeCarlo TM; Moore B; D'Alexis Q; McCulloch MT Proc Biol Sci; 2018 Aug; 285(1884):. PubMed ID: 30089625 [TBL] [Abstract][Full Text] [Related]
9. INTERACTIONS BETWEEN OCEAN ACIDIFICATION AND WARMING ON THE MORTALITY AND DISSOLUTION OF CORALLINE ALGAE(1). Diaz-Pulido G; Anthony KR; Kline DI; Dove S; Hoegh-Guldberg O J Phycol; 2012 Feb; 48(1):32-9. PubMed ID: 27009647 [TBL] [Abstract][Full Text] [Related]
10. An Overview of the Medical Applications of Marine Skeletal Matrix Proteins. Rahman MA Mar Drugs; 2016 Sep; 14(9):. PubMed ID: 27626432 [TBL] [Abstract][Full Text] [Related]
11. Major loss of coralline algal diversity in response to ocean acidification. Peña V; Harvey BP; Agostini S; Porzio L; Milazzo M; Horta P; Le Gall L; Hall-Spencer JM Glob Chang Biol; 2021 Oct; 27(19):4785-4798. PubMed ID: 34268846 [TBL] [Abstract][Full Text] [Related]
12. Ocean acidification weakens the structural integrity of coralline algae. Ragazzola F; Foster LC; Form A; Anderson PS; Hansteen TH; Fietzke J Glob Chang Biol; 2012 Sep; 18(9):2804-12. PubMed ID: 24501058 [TBL] [Abstract][Full Text] [Related]
13. Coralline algal structure is more sensitive to rate, rather than the magnitude, of ocean acidification. Kamenos NA; Burdett HL; Aloisio E; Findlay HS; Martin S; Longbone C; Dunn J; Widdicombe S; Calosi P Glob Chang Biol; 2013 Dec; 19(12):3621-8. PubMed ID: 23943376 [TBL] [Abstract][Full Text] [Related]
14. Interplay of microbial communities with mineral environments in coralline algae. Valdespino-Castillo PM; Bautista-García A; Favoretto F; Merino-Ibarra M; Alcántara-Hernández RJ; Pi-Puig T; Castillo FS; Espinosa-Matías S; Holman HY; Blanco-Jarvio A Sci Total Environ; 2021 Feb; 757():143877. PubMed ID: 33316514 [TBL] [Abstract][Full Text] [Related]
15. Influences of salinity on the physiology and distribution of the Arctic coralline algae, Lithothamnion glaciale (Corallinales, Rhodophyta). Schoenrock KM; Bacquet M; Pearce D; Rea BR; Schofield JE; Lea J; Mair D; Kamenos N J Phycol; 2018 Oct; 54(5):690-702. PubMed ID: 30079466 [TBL] [Abstract][Full Text] [Related]
16. Investigating marine bio-calcification mechanisms in a changing ocean with in vivo and high-resolution ex vivo Raman spectroscopy. DeCarlo TM; Comeau S; Cornwall CE; Gajdzik L; Guagliardo P; Sadekov A; Thillainath EC; Trotter J; McCulloch MT Glob Chang Biol; 2019 May; 25(5):1877-1888. PubMed ID: 30689259 [TBL] [Abstract][Full Text] [Related]
17. Discovery of the mineral brucite (magnesium hydroxide) in the tropical calcifying alga Polystrata dura (Peyssonneliales, Rhodophyta). Nash MC; Russell BD; Dixon KR; Liu M; Xu H J Phycol; 2015 Jun; 51(3):403-7. PubMed ID: 26986657 [TBL] [Abstract][Full Text] [Related]
18. Generality in multispecies responses to ocean acidification revealed through multiple hypothesis testing. Barner AK; Chan F; Hettinger A; Hacker SD; Marshall K; Menge BA Glob Chang Biol; 2018 Oct; 24(10):4464-4477. PubMed ID: 30047188 [TBL] [Abstract][Full Text] [Related]
19. Diffusion boundary layers ameliorate the negative effects of ocean acidification on the temperate coralline macroalga Arthrocardia corymbosa. Cornwall CE; Boyd PW; McGraw CM; Hepburn CD; Pilditch CA; Morris JN; Smith AM; Hurd CL PLoS One; 2014; 9(5):e97235. PubMed ID: 24824089 [TBL] [Abstract][Full Text] [Related]
20. Efficient carbon recycling between calcification and photosynthesis in red coralline algae. Mao J; Burdett HL; Kamenos NA Biol Lett; 2024 Jun; 20(6):20230598. PubMed ID: 38889774 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]