BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

407 related articles for article (PubMed ID: 25145439)

  • 1. Controlling gene networks and cell fate with precision-targeted DNA-binding proteins and small-molecule-based genome readers.
    Eguchi A; Lee GO; Wan F; Erwin GS; Ansari AZ
    Biochem J; 2014 Sep; 462(3):397-413. PubMed ID: 25145439
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reprogramming cell fate with a genome-scale library of artificial transcription factors.
    Eguchi A; Wleklinski MJ; Spurgat MC; Heiderscheit EA; Kropornicka AS; Vu CK; Bhimsaria D; Swanson SA; Stewart R; Ramanathan P; Kamp TJ; Slukvin I; Thomson JA; Dutton JR; Ansari AZ
    Proc Natl Acad Sci U S A; 2016 Dec; 113(51):E8257-E8266. PubMed ID: 27930301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Specificity landscapes of DNA binding molecules elucidate biological function.
    Carlson CD; Warren CL; Hauschild KE; Ozers MS; Qadir N; Bhimsaria D; Lee Y; Cerrina F; Ansari AZ
    Proc Natl Acad Sci U S A; 2010 Mar; 107(10):4544-9. PubMed ID: 20176964
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineered zinc finger proteins for controlling stem cell fate.
    Bartsevich VV; Miller JC; Case CC; Pabo CO
    Stem Cells; 2003; 21(6):632-7. PubMed ID: 14595122
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polyamides as artificial transcription factors: novel tools for molecular medicine?
    Schmitz K; Schepers U
    Angew Chem Int Ed Engl; 2004 May; 43(19):2472-5. PubMed ID: 15127431
    [No Abstract]   [Full Text] [Related]  

  • 6. Regulation of gene expression by small molecules.
    Gottesfeld JM; Neely L; Trauger JW; Baird EE; Dervan PB
    Nature; 1997 May; 387(6629):202-5. PubMed ID: 9144294
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies.
    Gersbach CA; Gaj T; Barbas CF
    Acc Chem Res; 2014 Aug; 47(8):2309-18. PubMed ID: 24877793
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Step out of the groove: epigenetic gene control systems and engineered transcription factors.
    Verschure PJ; Visser AE; Rots MG
    Adv Genet; 2006; 56():163-204. PubMed ID: 16735158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Artificial transcription factors as tools for gene expression manipulation].
    Zhao XH; Zhu XD; Huang PT
    Sheng Wu Gong Cheng Xue Bao; 2005 May; 21(3):341-7. PubMed ID: 16108353
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Custom DNA-binding proteins and artificial transcription factors.
    Lee DK; Seol W; Kim JS
    Curr Top Med Chem; 2003; 3(6):645-57. PubMed ID: 12570857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zinc Fingers, TALEs, and CRISPR Systems: A Comparison of Tools for Epigenome Editing.
    Waryah CB; Moses C; Arooj M; Blancafort P
    Methods Mol Biol; 2018; 1767():19-63. PubMed ID: 29524128
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human zinc fingers as building blocks in the construction of artificial transcription factors.
    Bae KH; Kwon YD; Shin HC; Hwang MS; Ryu EH; Park KS; Yang HY; Lee DK; Lee Y; Park J; Kwon HS; Kim HW; Yeh BI; Lee HW; Sohn SH; Yoon J; Seol W; Kim JS
    Nat Biotechnol; 2003 Mar; 21(3):275-80. PubMed ID: 12592413
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Switching on cilia: transcriptional networks regulating ciliogenesis.
    Choksi SP; Lauter G; Swoboda P; Roy S
    Development; 2014 Apr; 141(7):1427-41. PubMed ID: 24644260
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Programmable genetic switches to control transcriptional machinery of pluripotency.
    Pandian GN; Sugiyama H
    Biotechnol J; 2012 Jun; 7(6):798-809. PubMed ID: 22588775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Applications of Engineered DNA-Binding Molecules Such as TAL Proteins and the CRISPR/Cas System in Biology Research.
    Fujita T; Fujii H
    Int J Mol Sci; 2015 Sep; 16(10):23143-64. PubMed ID: 26404236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Importance of minor groove binding zinc fingers within the transcription factor IIIA-DNA complex.
    Neely L; Trauger JW; Baird EE; Dervan PB; Gottesfeld JM
    J Mol Biol; 1997 Dec; 274(4):439-45. PubMed ID: 9417925
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Current and emerging approaches to define intestinal epithelium-specific transcriptional networks.
    Olsen AK; Boyd M; Danielsen ET; Troelsen JT
    Am J Physiol Gastrointest Liver Physiol; 2012 Feb; 302(3):G277-86. PubMed ID: 22094602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of zinc finger domains for recognition of the 5'-ANN-3' family of DNA sequences and their use in the construction of artificial transcription factors.
    Dreier B; Beerli RR; Segal DJ; Flippin JD; Barbas CF
    J Biol Chem; 2001 Aug; 276(31):29466-78. PubMed ID: 11340073
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zinc'ing sensibly: controlling zinc homeostasis at the transcriptional level.
    Choi S; Bird AJ
    Metallomics; 2014 Jul; 6(7):1198-215. PubMed ID: 24722954
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-free gene-regulatory network engineering with synthetic transcription factors.
    Swank Z; Laohakunakorn N; Maerkl SJ
    Proc Natl Acad Sci U S A; 2019 Mar; 116(13):5892-5901. PubMed ID: 30850530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.