These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 25146178)

  • 1. Micro-masonry for 3D additive micromanufacturing.
    Keum H; Kim S
    J Vis Exp; 2014 Aug; (90):e51974. PubMed ID: 25146178
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Micro-LEGO for MEMS.
    Kim S
    Micromachines (Basel); 2019 Apr; 10(4):. PubMed ID: 31010089
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additive manufacturing of three-dimensional (3D) microfluidic-based microelectromechanical systems (MEMS) for acoustofluidic applications.
    Cesewski E; Haring AP; Tong Y; Singh M; Thakur R; Laheri S; Read KA; Powell MD; Oestreich KJ; Johnson BN
    Lab Chip; 2018 Jul; 18(14):2087-2098. PubMed ID: 29897358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microassembly of Heterogeneous Materials using Transfer Printing and Thermal Processing.
    Keum H; Yang Z; Han K; Handler DE; Nguyen TN; Schutt-Aine J; Bahl G; Kim S
    Sci Rep; 2016 Jul; 6():29925. PubMed ID: 27427243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MEMS: Enabled Drug Delivery Systems.
    Cobo A; Sheybani R; Meng E
    Adv Healthc Mater; 2015 May; 4(7):969-82. PubMed ID: 25703045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrative technology-based approach of microelectromechanical systems (MEMS) for biosensing applications.
    Nicu L; Alava T; Leichle T; Saya D; Pourciel JB; Mathieu F; Soyer C; Remiens D; Ayela C; Haupt K
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():4475-8. PubMed ID: 23366921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inkjet printing of conductive inks with high lateral resolution on omniphobic "R(F) paper" for paper-based electronics and MEMS.
    Lessing J; Glavan AC; Walker SB; Keplinger C; Lewis JA; Whitesides GM
    Adv Mater; 2014 Jul; 26(27):4677-82. PubMed ID: 24889538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Atomic calligraphy: the direct writing of nanoscale structures using a microelectromechanical system.
    Imboden M; Han H; Chang J; Pardo F; Bolle CA; Lowell E; Bishop DJ
    Nano Lett; 2013 Jul; 13(7):3379-84. PubMed ID: 23782403
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stretchable Substrates for the Assembly of Polymeric Microstructures.
    Vinod TP; Taylor JM; Konda A; Morin SA
    Small; 2017 Feb; 13(8):. PubMed ID: 27982514
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Review on the modeling of electrostatic MEMS.
    Chuang WC; Lee HL; Chang PZ; Hu YC
    Sensors (Basel); 2010; 10(6):6149-71. PubMed ID: 22219707
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microelectromechanical systems and nephrology: the next frontier in renal replacement technology.
    Kim S; Roy S
    Adv Chronic Kidney Dis; 2013 Nov; 20(6):516-35. PubMed ID: 24206604
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micromechanical properties of hydrogels measured with MEMS resonant sensors.
    Corbin EA; Millet LJ; Pikul JH; Johnson CL; Georgiadis JG; King WP; Bashir R
    Biomed Microdevices; 2013 Apr; 15(2):311-9. PubMed ID: 23247581
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanochannel system fabricated by MEMS microfabrication and atomic force microscopy.
    Wang Z; Wang D; Jiao N; Tung S; Dong Z
    IET Nanobiotechnol; 2011 Dec; 5(4):108-13. PubMed ID: 22149865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of 3D Carbon Microelectromechanical Systems (C-MEMS).
    Pramanick B; Martinez-Chapa SO; Madou M; Hwang H
    J Vis Exp; 2017 Jun; (124):. PubMed ID: 28654068
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Adhesiveless Transfer Printing of Ultrathin Microscale Semiconductor Materials by Controlling the Bending Radius of an Elastomeric Stamp.
    Cho S; Kim N; Song K; Lee J
    Langmuir; 2016 Aug; 32(31):7951-7. PubMed ID: 27458878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Study and evaluation of a PCB-MEMS liquid microflow sensor.
    Petropoulos A; Kaltsas G
    Sensors (Basel); 2010; 10(10):8981-9001. PubMed ID: 22163392
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MEMS impedance flow cytometry designs for effective manipulation of micro entities in health care applications.
    Kumar M; Yadav S; Kumar A; Sharma NN; Akhtar J; Singh K
    Biosens Bioelectron; 2019 Oct; 142():111526. PubMed ID: 31362203
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A fluidics-based impact sensor.
    Takahashi D; Hara K; Okano T; Suzuki H
    PLoS One; 2018; 13(4):e0195741. PubMed ID: 29634750
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compact MEMS-driven pyramidal polygon reflector for circumferential scanned endoscopic imaging probe.
    Mu X; Zhou G; Yu H; Du Y; Feng H; Tsai JM; Chau FS
    Opt Express; 2012 Mar; 20(6):6325-39. PubMed ID: 22418514
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time- and computation-efficient calibration of MEMS 3D accelerometers and gyroscopes.
    Stančin S; Tomažič S
    Sensors (Basel); 2014 Aug; 14(8):14885-915. PubMed ID: 25123469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.