These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 25146317)

  • 1. Specific molecular structure changes and radical evolution during biomass-polyethylene terephthalate co-pyrolysis detected by (13)C and (1)H solid-state NMR.
    Ko KH; Sahajwalla V; Rawal A
    Bioresour Technol; 2014 Oct; 170():248-255. PubMed ID: 25146317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In situ direct sampling mass spectrometric study on formation of polycyclic aromatic hydrocarbons in toluene pyrolysis.
    Shukla B; Susa A; Miyoshi A; Koshi M
    J Phys Chem A; 2007 Aug; 111(34):8308-24. PubMed ID: 17685593
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermogravimetric and calorimetric characteristics during co-pyrolysis of municipal solid waste components.
    Ansah E; Wang L; Shahbazi A
    Waste Manag; 2016 Oct; 56():196-206. PubMed ID: 27324928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Real time monitoring of slow pyrolysis of polyethylene terephthalate (PET) by different mass spectrometric techniques.
    Dhahak A; Grimmer C; Neumann A; Rüger C; Sklorz M; Streibel T; Zimmermann R; Mauviel G; Burkle-Vitzthum V
    Waste Manag; 2020 Apr; 106():226-239. PubMed ID: 32240939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Polycyclic aromatic hydrocarbons (PAH) formation from the pyrolysis of different municipal solid waste fractions.
    Zhou H; Wu C; Onwudili JA; Meng A; Zhang Y; Williams PT
    Waste Manag; 2015 Feb; 36():136-46. PubMed ID: 25312776
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Importance of fundamental sp, sp2, and sp3 hydrocarbon radicals in the growth of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Anal Chem; 2012 Jun; 84(11):5007-16. PubMed ID: 22582767
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of catalytic pyrolysis conditions using pulse current heating method on pyrolysis products of wood biomass.
    Honma S; Hata T; Watanabe T
    ScientificWorldJournal; 2014; 2014():720527. PubMed ID: 25614894
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A highly efficient growth mechanism of polycyclic aromatic hydrocarbons.
    Shukla B; Koshi M
    Phys Chem Chem Phys; 2010 Mar; 12(10):2427-37. PubMed ID: 20449356
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Understanding the stability of pyrolysis tars from biomass in a view point of free radicals.
    He W; Liu Q; Shi L; Liu Z; Ci D; Lievens C; Guo X; Liu M
    Bioresour Technol; 2014 Mar; 156():372-5. PubMed ID: 24507874
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Pyrolysis kinetics and synergistic effect in co-pyrolysis of Samanea saman seeds and polyethylene terephthalate using thermogravimetric analyser.
    Mishra RK; Sahoo A; Mohanty K
    Bioresour Technol; 2019 Oct; 289():121608. PubMed ID: 31207415
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Solvent-extractable polycyclic aromatic hydrocarbons in biochar: influence of pyrolysis temperature and feedstock.
    Keiluweit M; Kleber M; Sparrow MA; Simoneit BR; Prahl FG
    Environ Sci Technol; 2012 Sep; 46(17):9333-41. PubMed ID: 22844988
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Heating rate effect on char yield from cotton, poly(ethylene terephthalate) and blend fabrics.
    Alongi J; Camino G; Malucelli G
    Carbohydr Polym; 2013 Feb; 92(2):1327-34. PubMed ID: 23399162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Conversion of polyethylene terephthalate waste into high-yield porous carbon adsorbent via pyrolysis of dipotassium terephthalate.
    Efimov MN; Vasilev AA; Muratov DG; Kostev AI; Kolesnikov EA; Kiseleva SG; Karpacheva GP
    Waste Manag; 2023 May; 162():113-122. PubMed ID: 36965449
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impacts of temperature on evolution of char structure during pyrolysis of lignin.
    Zhang C; Shao Y; Zhang L; Zhang S; Westerhof RJM; Liu Q; Jia P; Li Q; Wang Y; Hu X
    Sci Total Environ; 2020 Jan; 699():134381. PubMed ID: 31677466
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal decomposition and gasification of biomass pyrolysis gases using a hot bed of waste derived pyrolysis char.
    Al-Rahbi AS; Onwudili JA; Williams PT
    Bioresour Technol; 2016 Mar; 204():71-79. PubMed ID: 26773946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synergetic effects during co-pyrolysis of biomass and waste tire: A study on product distribution and reaction kinetics.
    Wang L; Chai M; Liu R; Cai J
    Bioresour Technol; 2018 Nov; 268():363-370. PubMed ID: 30096644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tar reduction in pyrolysis vapours from biomass over a hot char bed.
    Gilbert P; Ryu C; Sharifi V; Swithenbank J
    Bioresour Technol; 2009 Dec; 100(23):6045-51. PubMed ID: 19604685
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Element and PAH constituents in the residues and liquid oil from biosludge pyrolysis in an electrical thermal furnace.
    Chiang HL; Lin KH; Lai N; Shieh ZX
    Sci Total Environ; 2014 May; 481():533-41. PubMed ID: 24631616
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of polycyclic aromatic hydrocarbons formation from phenyl radical pyrolysis and reaction of phenyl and acetylene.
    Comandini A; Malewicki T; Brezinsky K
    J Phys Chem A; 2012 Mar; 116(10):2409-34. PubMed ID: 22339468
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In situ observation of radicals and molecular products during lignin pyrolysis.
    Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F
    ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.