BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25146434)

  • 1. Identification of mutant alleles of JAK3 in pediatric patients with acute lymphoblastic leukemia.
    Yin C; Sandoval C; Baeg GH
    Leuk Lymphoma; 2015 May; 56(5):1502-6. PubMed ID: 25146434
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distinct Acute Lymphoblastic Leukemia (ALL)-associated Janus Kinase 3 (JAK3) Mutants Exhibit Different Cytokine-Receptor Requirements and JAK Inhibitor Specificities.
    Losdyck E; Hornakova T; Springuel L; Degryse S; Gielen O; Cools J; Constantinescu SN; Flex E; Tartaglia M; Renauld JC; Knoops L
    J Biol Chem; 2015 Nov; 290(48):29022-34. PubMed ID: 26446793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. JAK3 pathway is constitutively active in B-lineage acute lymphoblastic leukemia.
    Uckun FM; Pitt J; Qazi S
    Expert Rev Anticancer Ther; 2011 Jan; 11(1):37-48. PubMed ID: 21070101
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Failure of tofacitinib to achieve an objective response in a
    Wong J; Wall M; Corboy GP; Taubenheim N; Gregory GP; Opat S; Shortt J
    Cold Spring Harb Mol Case Stud; 2020 Aug; 6(4):. PubMed ID: 32843425
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant JAK3 signaling is increased by loss of wild-type JAK3 or by acquisition of secondary JAK3 mutations in T-ALL.
    Degryse S; Bornschein S; de Bock CE; Leroy E; Vanden Bempt M; Demeyer S; Jacobs K; Geerdens E; Gielen O; Soulier J; Harrison CJ; Constantinescu SN; Cools J
    Blood; 2018 Jan; 131(4):421-425. PubMed ID: 29187379
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional RNAi screen targeting cytokine and growth factor receptors reveals oncorequisite role for interleukin-2 gamma receptor in JAK3-mutation-positive leukemia.
    Agarwal A; MacKenzie RJ; Eide CA; Davare MA; Watanabe-Smith K; Tognon CE; Mongoue-Tchokote S; Park B; Braziel RM; Tyner JW; Druker BJ
    Oncogene; 2015 Jun; 34(23):2991-9. PubMed ID: 25109334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. JAK mutations in high-risk childhood acute lymphoblastic leukemia.
    Mullighan CG; Zhang J; Harvey RC; Collins-Underwood JR; Schulman BA; Phillips LA; Tasian SK; Loh ML; Su X; Liu W; Devidas M; Atlas SR; Chen IM; Clifford RJ; Gerhard DS; Carroll WL; Reaman GH; Smith M; Downing JR; Hunger SP; Willman CL
    Proc Natl Acad Sci U S A; 2009 Jun; 106(23):9414-8. PubMed ID: 19470474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. JAK3 mutants transform hematopoietic cells through JAK1 activation, causing T-cell acute lymphoblastic leukemia in a mouse model.
    Degryse S; de Bock CE; Cox L; Demeyer S; Gielen O; Mentens N; Jacobs K; Geerdens E; Gianfelici V; Hulselmans G; Fiers M; Aerts S; Meijerink JP; Tousseyn T; Cools J
    Blood; 2014 Nov; 124(20):3092-100. PubMed ID: 25193870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute lymphoblastic leukemia-associated JAK1 mutants activate the Janus kinase/STAT pathway via interleukin-9 receptor alpha homodimers.
    Hornakova T; Staerk J; Royer Y; Flex E; Tartaglia M; Constantinescu SN; Knoops L; Renauld JC
    J Biol Chem; 2009 Mar; 284(11):6773-81. PubMed ID: 19139102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PHF6 and JAK3 mutations cooperate to drive T-cell acute lymphoblastic leukemia progression.
    Yuan S; Wang X; Hou S; Guo T; Lan Y; Yang S; Zhao F; Gao J; Wang Y; Chu Y; Shi J; Cheng T; Yuan W
    Leukemia; 2022 Feb; 36(2):370-382. PubMed ID: 34465864
    [TBL] [Abstract][Full Text] [Related]  

  • 11. HOXA9 Cooperates with Activated JAK/STAT Signaling to Drive Leukemia Development.
    de Bock CE; Demeyer S; Degryse S; Verbeke D; Sweron B; Gielen O; Vandepoel R; Vicente C; Vanden Bempt M; Dagklis A; Geerdens E; Bornschein S; Gijsbers R; Soulier J; Meijerink JP; Heinäniemi M; Teppo S; Bouvy-Liivrand M; Lohi O; Radaelli E; Cools J
    Cancer Discov; 2018 May; 8(5):616-631. PubMed ID: 29496663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activating alleles of JAK3 in acute megakaryoblastic leukemia.
    Walters DK; Mercher T; Gu TL; O'Hare T; Tyner JW; Loriaux M; Goss VL; Lee KA; Eide CA; Wong MJ; Stoffregen EP; McGreevey L; Nardone J; Moore SA; Crispino J; Boggon TJ; Heinrich MC; Deininger MW; Polakiewicz RD; Gilliland DG; Druker BJ
    Cancer Cell; 2006 Jul; 10(1):65-75. PubMed ID: 16843266
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel JAK3-Activating Mutations in Extranodal NK/T-Cell Lymphoma, Nasal Type.
    Sim SH; Kim S; Kim TM; Jeon YK; Nam SJ; Ahn YO; Keam B; Park HH; Kim DW; Kim CW; Heo DS
    Am J Pathol; 2017 May; 187(5):980-986. PubMed ID: 28284718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Transforming Mutations of Jak3 (A573V and M511I) Show Differential Sensitivity to Selective Jak3 Inhibitors.
    Martinez GS; Ross JA; Kirken RA
    Clin Cancer Drugs; 2016; 3(2):131-137. PubMed ID: 29046866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma.
    Bouchekioua A; Scourzic L; de Wever O; Zhang Y; Cervera P; Aline-Fardin A; Mercher T; Gaulard P; Nyga R; Jeziorowska D; Douay L; Vainchenker W; Louache F; Gespach C; Solary E; Coppo P
    Leukemia; 2014 Feb; 28(2):338-48. PubMed ID: 23689514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cooperating JAK1 and JAK3 mutants increase resistance to JAK inhibitors.
    Springuel L; Hornakova T; Losdyck E; Lambert F; Leroy E; Constantinescu SN; Flex E; Tartaglia M; Knoops L; Renauld JC
    Blood; 2014 Dec; 124(26):3924-31. PubMed ID: 25352124
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Suz12 inactivation cooperates with JAK3 mutant signaling in the development of T-cell acute lymphoblastic leukemia.
    Broux M; Prieto C; Demeyer S; Vanden Bempt M; Alberti-Servera L; Lodewijckx I; Vandepoel R; Mentens N; Gielen O; Jacobs K; Geerdens E; Vicente C; de Bock CE; Cools J
    Blood; 2019 Oct; 134(16):1323-1336. PubMed ID: 31492675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Janus kinase 3-activating mutations identified in natural killer/T-cell lymphoma.
    Koo GC; Tan SY; Tang T; Poon SL; Allen GE; Tan L; Chong SC; Ong WS; Tay K; Tao M; Quek R; Loong S; Yeoh KW; Yap SP; Lee KA; Lim LC; Tan D; Goh C; Cutcutache I; Yu W; Ng CC; Rajasegaran V; Heng HL; Gan A; Ong CK; Rozen S; Tan P; Teh BT; Lim ST
    Cancer Discov; 2012 Jul; 2(7):591-7. PubMed ID: 22705984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. BLNK suppresses pre-B-cell leukemogenesis through inhibition of JAK3.
    Nakayama J; Yamamoto M; Hayashi K; Satoh H; Bundo K; Kubo M; Goitsuka R; Farrar MA; Kitamura D
    Blood; 2009 Feb; 113(7):1483-92. PubMed ID: 19047679
    [TBL] [Abstract][Full Text] [Related]  

  • 20. IL-7 Receptor Mutations and Steroid Resistance in Pediatric T cell Acute Lymphoblastic Leukemia: A Genome Sequencing Study.
    Li Y; Buijs-Gladdines JG; Canté-Barrett K; Stubbs AP; Vroegindeweij EM; Smits WK; van Marion R; Dinjens WN; Horstmann M; Kuiper RP; Buijsman RC; Zaman GJ; van der Spek PJ; Pieters R; Meijerink JP
    PLoS Med; 2016 Dec; 13(12):e1002200. PubMed ID: 27997540
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.