BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 25146434)

  • 21. Suppressors and activators of JAK-STAT signaling at diagnosis and relapse of acute lymphoblastic leukemia in Down syndrome.
    Schwartzman O; Savino AM; Gombert M; Palmi C; Cario G; Schrappe M; Eckert C; von Stackelberg A; Huang JY; Hameiri-Grossman M; Avigad S; Te Kronnie G; Geron I; Birger Y; Rein A; Zarfati G; Fischer U; Mukamel Z; Stanulla M; Biondi A; Cazzaniga G; Vetere A; Wagner BK; Chen Z; Chen SJ; Tanay A; Borkhardt A; Izraeli S
    Proc Natl Acad Sci U S A; 2017 May; 114(20):E4030-E4039. PubMed ID: 28461505
    [TBL] [Abstract][Full Text] [Related]  

  • 22. JAK kinases overexpression promotes in vitro cell transformation.
    Knoops L; Hornakova T; Royer Y; Constantinescu SN; Renauld JC
    Oncogene; 2008 Mar; 27(11):1511-9. PubMed ID: 17873904
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Jak3 expression and genomic sequence in pediatric acute lymphoblastic leukemia.
    Wood CM; Goodman PA; Uckun FM
    Leuk Lymphoma; 2002 Dec; 43(12):2355-62. PubMed ID: 12613524
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Th17 cytokine differentiation and loss of plasticity after SOCS1 inactivation in a cutaneous T-cell lymphoma.
    Ehrentraut S; Schneider B; Nagel S; Pommerenke C; Quentmeier H; Geffers R; Feist M; Kaufmann M; Meyer C; Kadin ME; Drexler HG; MacLeod RA
    Oncotarget; 2016 Jun; 7(23):34201-16. PubMed ID: 27144517
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gene expression profiles of infant acute lymphoblastic leukaemia and its prognostically distinct subsets.
    Qazi S; Uckun FM
    Br J Haematol; 2010 Jun; 149(6):865-73. PubMed ID: 20377589
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Description of a novel Janus kinase 3 P132A mutation in acute megakaryoblastic leukemia and demonstration of previously reported Janus kinase 3 mutations in normal subjects.
    Riera L; Lasorsa E; Bonello L; Sismondi F; Tondat F; Di Bello C; Di Celle PF; Chiarle R; Godio L; Pich A; Facchetti F; Ponzoni M; Marmont F; Zanon C; Bardelli A; Inghirami G
    Leuk Lymphoma; 2011 Sep; 52(9):1742-50. PubMed ID: 21599579
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Absence of gain-of-function JAK1 and JAK3 mutations in adult T cell leukemia/lymphoma.
    Kameda T; Shide K; Shimoda HK; Hidaka T; Kubuki Y; Katayose K; Taniguchi Y; Sekine M; Kamiunntenn A; Maeda K; Nagata K; Matsunaga T; Shimoda K
    Int J Hematol; 2010 Sep; 92(2):320-5. PubMed ID: 20697856
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mutant JAK3 phosphoproteomic profiling predicts synergism between JAK3 inhibitors and MEK/BCL2 inhibitors for the treatment of T-cell acute lymphoblastic leukemia.
    Degryse S; de Bock CE; Demeyer S; Govaerts I; Bornschein S; Verbeke D; Jacobs K; Binos S; Skerrett-Byrne DA; Murray HC; Verrills NM; Van Vlierberghe P; Cools J; Dun MD
    Leukemia; 2018 Mar; 32(3):788-800. PubMed ID: 28852199
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The JAK3
    Lahera A; Vela-Martín L; Fernández-Navarro P; Llamas P; López-Lorenzo JL; Cornago J; Santos J; Fernández-Piqueras J; Villa-Morales M
    Mol Carcinog; 2024 Jan; 63(1):5-10. PubMed ID: 37712558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. N-Acetylcysteine Alters Disease Progression and Increases Janus Kinase Mutation Frequency in a Mouse Model of Precursor B-Cell Acute Lymphoblastic Leukemia.
    Sams MP; Iansavitchous J; Astridge M; Rysan H; Xu LS; Rodrigues de Oliveira B; DeKoter RP
    J Pharmacol Exp Ther; 2024 Mar; 389(1):40-50. PubMed ID: 38336380
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Janus Kinase Mutations in Mice Lacking PU.1 and Spi-B Drive B Cell Leukemia through Reactive Oxygen Species-Induced DNA Damage.
    Lim M; Batista CR; de Oliveira BR; Creighton R; Ferguson J; Clemmer K; Knight D; Iansavitchous J; Mahmood D; Avino M; DeKoter RP
    Mol Cell Biol; 2020 Aug; 40(18):. PubMed ID: 32631903
    [TBL] [Abstract][Full Text] [Related]  

  • 32. JAK3 mutations and mitochondrial apoptosis resistance in T-cell acute lymphoblastic leukemia.
    Bodaar K; Yamagata N; Barthe A; Landrigan J; Chonghaile TN; Burns M; Stevenson KE; Devidas M; Loh ML; Hunger SP; Wood B; Silverman LB; Teachey DT; Meijerink JP; Letai A; Gutierrez A
    Leukemia; 2022 Jun; 36(6):1499-1507. PubMed ID: 35411095
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of a homozygous JAK3 V674A mutation caused by acquired uniparental disomy in a relapsed early T-cell precursor ALL patient.
    Kawashima-Goto S; Imamura T; Seki M; Kato M; Yoshida K; Sugimoto A; Kaneda D; Fujiki A; Miyachi M; Nakatani T; Osone S; Ishida H; Taki T; Takita J; Shiraishi Y; Chiba K; Tanaka H; Miyano S; Ogawa S; Hosoi H
    Int J Hematol; 2015 Apr; 101(4):411-6. PubMed ID: 25430085
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional analysis of JAK3 mutations in transient myeloproliferative disorder and acute megakaryoblastic leukaemia accompanying Down syndrome.
    Sato T; Toki T; Kanezaki R; Xu G; Terui K; Kanegane H; Miura M; Adachi S; Migita M; Morinaga S; Nakano T; Endo M; Kojima S; Kiyoi H; Mano H; Ito E
    Br J Haematol; 2008 May; 141(5):681-8. PubMed ID: 18397343
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors.
    Haan C; Rolvering C; Raulf F; Kapp M; Drückes P; Thoma G; Behrmann I; Zerwes HG
    Chem Biol; 2011 Mar; 18(3):314-23. PubMed ID: 21439476
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Somatically acquired JAK1 mutations in adult acute lymphoblastic leukemia.
    Flex E; Petrangeli V; Stella L; Chiaretti S; Hornakova T; Knoops L; Ariola C; Fodale V; Clappier E; Paoloni F; Martinelli S; Fragale A; Sanchez M; Tavolaro S; Messina M; Cazzaniga G; Camera A; Pizzolo G; Tornesello A; Vignetti M; Battistini A; Cavé H; Gelb BD; Renauld JC; Biondi A; Constantinescu SN; Foà R; Tartaglia M
    J Exp Med; 2008 Apr; 205(4):751-8. PubMed ID: 18362173
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic alterations targeting lymphoid development in acute lymphoblastic leukemia.
    Collins-Underwood JR; Mullighan CG
    Curr Top Dev Biol; 2011; 94():171-96. PubMed ID: 21295687
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Jak3, STAT3, and STAT5 inhibit expression of miR-22, a novel tumor suppressor microRNA, in cutaneous T-Cell lymphoma.
    Sibbesen NA; Kopp KL; Litvinov IV; Jønson L; Willerslev-Olsen A; Fredholm S; Petersen DL; Nastasi C; Krejsgaard T; Lindahl LM; Gniadecki R; Mongan NP; Sasseville D; Wasik MA; Iversen L; Bonefeld CM; Geisler C; Woetmann A; Odum N
    Oncotarget; 2015 Aug; 6(24):20555-69. PubMed ID: 26244872
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tubulosine selectively inhibits JAK3 signalling by binding to the ATP-binding site of the kinase of JAK3.
    Kim BH; Yi EH; Jee JG; Jeong AJ; Sandoval C; Park IC; Baeg GH; Ye SK
    J Cell Mol Med; 2020 Jul; 24(13):7427-7438. PubMed ID: 32558259
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Newly described activating JAK3 mutations in T-cell acute lymphoblastic leukemia.
    Bains T; Heinrich MC; Loriaux MM; Beadling C; Nelson D; Warrick A; Neff TL; Tyner JW; Dunlap J; Corless CL; Fan G
    Leukemia; 2012 Sep; 26(9):2144-6. PubMed ID: 22425895
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.