BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 25146561)

  • 1. Nanothorn electrodes for ionic polymer-metal composite artificial muscles.
    Palmre V; Pugal D; Kim KJ; Leang KK; Asaka K; Aabloo A
    Sci Rep; 2014 Aug; 4():6176. PubMed ID: 25146561
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Electroactive Polymer Actuators Based on Ultrathick Ionic Polymer-Metal Composites with Nanodispersed Metal Electrodes.
    Wang HS; Cho J; Song DS; Jang JH; Jho JY; Park JH
    ACS Appl Mater Interfaces; 2017 Jul; 9(26):21998-22005. PubMed ID: 28593763
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced biomimetic performance of ionic polymer-metal composite actuators prepared with nanostructured block ionomers.
    Vargantwar PH; Roskov KE; Ghosh TK; Spontak RJ
    Macromol Rapid Commun; 2012 Jan; 33(1):61-8. PubMed ID: 22105960
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication and Characterization of a Novel Smart-Polymer Actuator with Nanodispersed CNT/Pd Composite Interfacial Electrodes.
    Ru J; Zhao D; Zhu Z; Wang Y
    Polymers (Basel); 2022 Aug; 14(17):. PubMed ID: 36080568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon nanotube and graphene-based bioinspired electrochemical actuators.
    Kong L; Chen W
    Adv Mater; 2014 Feb; 26(7):1025-43. PubMed ID: 24338697
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Soft but Powerful Artificial Muscles Based on 3D Graphene-CNT-Ni Heteronanostructures.
    Kim J; Bae SH; Kotal M; Stalbaum T; Kim KJ; Oh IK
    Small; 2017 Aug; 13(31):. PubMed ID: 28656636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Low-Voltage Driven Ionic Polymer-Metal Composite Actuators: Structures, Materials, and Applications.
    Zhang H; Lin Z; Hu Y; Ma S; Liang Y; Ren L; Ren L
    Adv Sci (Weinh); 2023 Apr; 10(10):e2206135. PubMed ID: 36683153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dielectric Elastomer Artificial Muscle: Materials Innovations and Device Explorations.
    Qiu Y; Zhang E; Plamthottam R; Pei Q
    Acc Chem Res; 2019 Feb; 52(2):316-325. PubMed ID: 30698006
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A self-strain feedback tuning-fork-shaped ionic polymer metal composite clamping actuator with soft matter elasticity-detecting capability for biomedical applications.
    Feng GH; Huang WL
    Mater Sci Eng C Mater Biol Appl; 2014 Dec; 45():241-9. PubMed ID: 25491826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast low-voltage electroactive actuators using nanostructured polymer electrolytes.
    Kim O; Shin TJ; Park MJ
    Nat Commun; 2013; 4():2208. PubMed ID: 23896756
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophilic Poly(vinylidene Fluoride) Film with Enhanced Inner Channels for Both Water- and Ionic Liquid-Driven Ion-Exchange Polymer Metal Composite Actuators.
    Guo D; Han Y; Huang J; Meng E; Ma L; Zhang H; Ding Y
    ACS Appl Mater Interfaces; 2019 Jan; 11(2):2386-2397. PubMed ID: 30604952
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomimetic robotic Venus flytrap (Dionaea muscipula Ellis) made with ionic polymer metal composites.
    Shahinpoor M
    Bioinspir Biomim; 2011 Dec; 6(4):046004. PubMed ID: 21992999
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ionic Polymer-Metal Composites: From Material Engineering to Flexible Applications.
    Lu C; Zhang X
    Acc Chem Res; 2024 Jan; 57(1):131-139. PubMed ID: 38095618
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of artificial muscles based on electroactive ionomeric polymer-metal composites.
    Hirano LA; Escote MT; Martins-Filho LS; Mantovani GL; Scuracchio CH
    Artif Organs; 2011 May; 35(5):478-83. PubMed ID: 21595715
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Modification Technology Analysis of Ionic Polymer-Metal Composites (IPMCs).
    He C; Gu Y; Zhang J; Ma L; Yan M; Mou J; Ren Y
    Int J Mol Sci; 2022 Mar; 23(7):. PubMed ID: 35408883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newton Output Blocking Force under Low-Voltage Stimulation for Carbon Nanotube-Electroactive Polymer Composite Artificial Muscles.
    Chen IP; Yang MC; Yang CH; Zhong DX; Hsu MC; Chen Y
    ACS Appl Mater Interfaces; 2017 Feb; 9(6):5550-5555. PubMed ID: 28107622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fuel-Driven Redox Reactions in Electrolyte-Free Polymer Actuators for Soft Robotics.
    Sarikaya S; Gardea F; Auletta JT; Langrock A; Kim H; Mackie DM; Naraghi M
    ACS Appl Mater Interfaces; 2023 Jul; 15(26):31803-31811. PubMed ID: 37345639
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An artificial muscle actuator for biomimetic underwater propulsors.
    Yim W; Lee J; Kim KJ
    Bioinspir Biomim; 2007 Jun; 2(2):S31-41. PubMed ID: 17671327
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A review on robotic fish enabled by ionic polymer-metal composite artificial muscles.
    Chen Z
    Robotics Biomim; 2017; 4(1):24. PubMed ID: 29264109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes.
    Kim J; Jeon JH; Kim HJ; Lim H; Oh IK
    ACS Nano; 2014 Mar; 8(3):2986-97. PubMed ID: 24548279
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.