These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 25147248)
1. Evaluating the state of the art in disorder recognition and normalization of the clinical narrative. Pradhan S; Elhadad N; South BR; Martinez D; Christensen L; Vogel A; Suominen H; Chapman WW; Savova G J Am Med Inform Assoc; 2015 Jan; 22(1):143-54. PubMed ID: 25147248 [TBL] [Abstract][Full Text] [Related]
2. The 2019 National Natural language processing (NLP) Clinical Challenges (n2c2)/Open Health NLP (OHNLP) shared task on clinical concept normalization for clinical records. Henry S; Wang Y; Shen F; Uzuner O J Am Med Inform Assoc; 2020 Oct; 27(10):1529-1537. PubMed ID: 32968800 [TBL] [Abstract][Full Text] [Related]
3. Challenges in clinical natural language processing for automated disorder normalization. Leaman R; Khare R; Lu Z J Biomed Inform; 2015 Oct; 57():28-37. PubMed ID: 26187250 [TBL] [Abstract][Full Text] [Related]
4. Development and evaluation of RapTAT: a machine learning system for concept mapping of phrases from medical narratives. Gobbel GT; Reeves R; Jayaramaraja S; Giuse D; Speroff T; Brown SH; Elkin PL; Matheny ME J Biomed Inform; 2014 Apr; 48():54-65. PubMed ID: 24316051 [TBL] [Abstract][Full Text] [Related]
5. Task definition, annotated dataset, and supervised natural language processing models for symptom extraction from unstructured clinical notes. Steinkamp JM; Bala W; Sharma A; Kantrowitz JJ J Biomed Inform; 2020 Feb; 102():103354. PubMed ID: 31838210 [TBL] [Abstract][Full Text] [Related]
6. Unified Medical Language System resources improve sieve-based generation and Bidirectional Encoder Representations from Transformers (BERT)-based ranking for concept normalization. Xu D; Gopale M; Zhang J; Brown K; Begoli E; Bethard S J Am Med Inform Assoc; 2020 Oct; 27(10):1510-1519. PubMed ID: 32719838 [TBL] [Abstract][Full Text] [Related]
8. Ambiguity in medical concept normalization: An analysis of types and coverage in electronic health record datasets. Newman-Griffis D; Divita G; Desmet B; Zirikly A; Rosé CP; Fosler-Lussier E J Am Med Inform Assoc; 2021 Mar; 28(3):516-532. PubMed ID: 33319905 [TBL] [Abstract][Full Text] [Related]
9. CUILESS2016: a clinical corpus applying compositional normalization of text mentions. Osborne JD; Neu MB; Danila MI; Solorio T; Bethard SJ J Biomed Semantics; 2018 Jan; 9(1):2. PubMed ID: 29316970 [TBL] [Abstract][Full Text] [Related]
10. Assessment of disease named entity recognition on a corpus of annotated sentences. Jimeno A; Jimenez-Ruiz E; Lee V; Gaudan S; Berlanga R; Rebholz-Schuhmann D BMC Bioinformatics; 2008 Apr; 9 Suppl 3(Suppl 3):S3. PubMed ID: 18426548 [TBL] [Abstract][Full Text] [Related]
11. deepBioWSD: effective deep neural word sense disambiguation of biomedical text data. Pesaranghader A; Matwin S; Sokolova M; Pesaranghader A J Am Med Inform Assoc; 2019 May; 26(5):438-446. PubMed ID: 30811548 [TBL] [Abstract][Full Text] [Related]
12. Ontology-driven and weakly supervised rare disease identification from clinical notes. Dong H; Suárez-Paniagua V; Zhang H; Wang M; Casey A; Davidson E; Chen J; Alex B; Whiteley W; Wu H BMC Med Inform Decis Mak; 2023 May; 23(1):86. PubMed ID: 37147628 [TBL] [Abstract][Full Text] [Related]
13. A comparison of word embeddings for the biomedical natural language processing. Wang Y; Liu S; Afzal N; Rastegar-Mojarad M; Wang L; Shen F; Kingsbury P; Liu H J Biomed Inform; 2018 Nov; 87():12-20. PubMed ID: 30217670 [TBL] [Abstract][Full Text] [Related]
14. NCBI disease corpus: a resource for disease name recognition and concept normalization. Doğan RI; Leaman R; Lu Z J Biomed Inform; 2014 Feb; 47():1-10. PubMed ID: 24393765 [TBL] [Abstract][Full Text] [Related]
15. Extraction of UMLS® Concepts Using Apache cTAKES™ for German Language. Becker M; Böckmann B Stud Health Technol Inform; 2016; 223():71-6. PubMed ID: 27139387 [TBL] [Abstract][Full Text] [Related]
16. MCN: A comprehensive corpus for medical concept normalization. Luo YF; Sun W; Rumshisky A J Biomed Inform; 2019 Apr; 92():103132. PubMed ID: 30802545 [TBL] [Abstract][Full Text] [Related]
17. Normalizing clinical terms using learned edit distance patterns. Kate RJ J Am Med Inform Assoc; 2016 Mar; 23(2):380-6. PubMed ID: 26232443 [TBL] [Abstract][Full Text] [Related]
18. Clinical Information Extraction at the CLEF eHealth Evaluation lab 2016. Névéol A; Cohen KB; Grouin C; Hamon T; Lavergne T; Kelly L; Goeuriot L; Rey G; Robert A; Tannier X; Zweigenbaum P CEUR Workshop Proc; 2016 Sep; 1609():28-42. PubMed ID: 29308065 [TBL] [Abstract][Full Text] [Related]
19. A study of machine-learning-based approaches to extract clinical entities and their assertions from discharge summaries. Jiang M; Chen Y; Liu M; Rosenbloom ST; Mani S; Denny JC; Xu H J Am Med Inform Assoc; 2011; 18(5):601-6. PubMed ID: 21508414 [TBL] [Abstract][Full Text] [Related]
20. A Hybrid Model for Family History Information Identification and Relation Extraction: Development and Evaluation of an End-to-End Information Extraction System. Kim Y; Heider PM; Lally IR; Meystre SM JMIR Med Inform; 2021 Apr; 9(4):e22797. PubMed ID: 33885370 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]