BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 25147249)

  • 1. A Monte Carlo calibration of a whole body counter using the ICRP computational phantoms.
    Nilsson J; Isaksson M
    Radiat Prot Dosimetry; 2015 Mar; 163(4):458-67. PubMed ID: 25147249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monte Carlo simulation of a whole-body counter using IGOR phantoms.
    Bochud FO; Laedermann JP; Baechler S; Bailat CJ; Boschung M; Aroua A; Mayer S
    Radiat Prot Dosimetry; 2014 Dec; 162(3):280-8. PubMed ID: 24379435
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency correction factors of an ACCUSCAN whole-body counter due to the biodistribution of 134Cs, 137Cs and 60Co.
    Bento J; Barros S; Teles P; Vaz P; Zankl M
    Radiat Prot Dosimetry; 2013 Jun; 155(1):16-24. PubMed ID: 23188813
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monte Carlo simulation of the full energy peak efficiency of a WBC.
    Nogueira P; Silva L; Teles P; Bento J; Vaz P
    Appl Radiat Isot; 2010 Jan; 68(1):184-9. PubMed ID: 19819154
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of voxel phantoms and Monte Carlo method to whole-body counter calibration.
    Kinase S; Takagi S; Noguchi H; Saito K
    Radiat Prot Dosimetry; 2007; 125(1-4):189-93. PubMed ID: 17522042
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monte Carlo calculations for efficiency calibration of a whole-body monitor using BOMAB phantoms of different sizes.
    Bhati S; Patni HK; Ghare VP; Singh IS; Nadar MY
    Radiat Prot Dosimetry; 2012 Mar; 148(4):414-9. PubMed ID: 21531750
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Uncertainty budget for a whole body counter in the scan geometry and computer simulation of the calibration phantoms.
    Schlagbauer M; Hrnecek E; Rollet S; Fischer H; Brandl A; Kindl P
    Radiat Prot Dosimetry; 2007; 125(1-4):149-52. PubMed ID: 17656442
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency of whole-body counter for various body size calculated by MCNP5 software.
    Krstic D; Nikezic D
    Radiat Prot Dosimetry; 2012 Nov; 152(1-3):179-83. PubMed ID: 22923253
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of counting efficiencies of a whole-body counter using Monte Carlo simulation with voxel phantoms.
    Takahashi M; Kinase S; Kramer R
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):407-10. PubMed ID: 21131662
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte Carlo simulation of the movement and detection efficiency of a whole-body counting system using a BOMAB phantom.
    Bento J; Barros S; Teles P; Neves M; Gonçalves I; Corisco J; Vaz P
    Radiat Prot Dosimetry; 2012 Mar; 148(4):403-13. PubMed ID: 21525044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison between Monte Carlo-calculated and -measured total efficiencies and energy resolution for large plastic scintillators used in whole-body counting.
    Nilsson J; Isaksson M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):555-9. PubMed ID: 21044997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data.
    Shypailo RJ; Ellis KJ
    Phys Med Biol; 2011 May; 56(10):2979-97. PubMed ID: 21490381
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Calibration of a whole body counter using Monte Carlo methods].
    Breustedt B; Paetz gen Schieck H; Schicha H; Eschner W
    Z Med Phys; 2004; 14(2):85-94. PubMed ID: 15323286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. COMPARISON OF COMPUTATIONAL PHANTOMS AND INVESTIGATION OF THE EFFECT OF BIODISTRIBUTION ON ACTIVITY ESTIMATIONS.
    Cartemo P; Nilsson J; Isaksson M; Nordlund A
    Radiat Prot Dosimetry; 2016 Nov; 171(3):358-364. PubMed ID: 26410764
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A methodology to develop computational phantoms with adjustable posture for WBC calibration.
    Fonseca TC; Bogaerts R; Hunt J; Vanhavere F
    Phys Med Biol; 2014 Nov; 59(22):6811-25. PubMed ID: 25332309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The standfast whole body counter and the sliced BOMAB phantom: efficiency as a function of number of sources and energy modeled by MCNP5.
    Kramer GH; Capello K
    Health Phys; 2007 Feb; 92(2):170-5. PubMed ID: 17220718
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of various anthropomorphic phantom types for in vivo measurements by means of Monte Carlo simulations.
    Schläger M
    Radiat Prot Dosimetry; 2011 Mar; 144(1-4):384-8. PubMed ID: 21030400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of the counting efficiency of a WBC setup by using a computational 3D human body library in sitting position based on polygonal mesh surfaces.
    Fonseca TC; Bogaerts R; Lebacq AL; Mihailescu CL; Vanhavere F
    Health Phys; 2014 Apr; 106(4):484-93. PubMed ID: 24562069
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRUCIAL PARAMETERS FOR PROPER SIMULATION OF THE DETECTOR USED IN IN VIVO MEASUREMENTS.
    Vrba T
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):359-63. PubMed ID: 26743254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CREATION OF FEMALE COMPUTATIONAL PHANTOMS FOR CALIBRATION OF LUNG COUNTERS.
    Lombardo PA; Lebacq AL; Vanhavere F
    Radiat Prot Dosimetry; 2016 Sep; 170(1-4):369-72. PubMed ID: 26763902
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.