These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
241 related articles for article (PubMed ID: 25147249)
1. A Monte Carlo calibration of a whole body counter using the ICRP computational phantoms. Nilsson J; Isaksson M Radiat Prot Dosimetry; 2015 Mar; 163(4):458-67. PubMed ID: 25147249 [TBL] [Abstract][Full Text] [Related]
2. Monte Carlo simulation of a whole-body counter using IGOR phantoms. Bochud FO; Laedermann JP; Baechler S; Bailat CJ; Boschung M; Aroua A; Mayer S Radiat Prot Dosimetry; 2014 Dec; 162(3):280-8. PubMed ID: 24379435 [TBL] [Abstract][Full Text] [Related]
3. Efficiency correction factors of an ACCUSCAN whole-body counter due to the biodistribution of 134Cs, 137Cs and 60Co. Bento J; Barros S; Teles P; Vaz P; Zankl M Radiat Prot Dosimetry; 2013 Jun; 155(1):16-24. PubMed ID: 23188813 [TBL] [Abstract][Full Text] [Related]
4. Monte Carlo simulation of the full energy peak efficiency of a WBC. Nogueira P; Silva L; Teles P; Bento J; Vaz P Appl Radiat Isot; 2010 Jan; 68(1):184-9. PubMed ID: 19819154 [TBL] [Abstract][Full Text] [Related]
5. Application of voxel phantoms and Monte Carlo method to whole-body counter calibration. Kinase S; Takagi S; Noguchi H; Saito K Radiat Prot Dosimetry; 2007; 125(1-4):189-93. PubMed ID: 17522042 [TBL] [Abstract][Full Text] [Related]
6. Monte Carlo calculations for efficiency calibration of a whole-body monitor using BOMAB phantoms of different sizes. Bhati S; Patni HK; Ghare VP; Singh IS; Nadar MY Radiat Prot Dosimetry; 2012 Mar; 148(4):414-9. PubMed ID: 21531750 [TBL] [Abstract][Full Text] [Related]
7. Uncertainty budget for a whole body counter in the scan geometry and computer simulation of the calibration phantoms. Schlagbauer M; Hrnecek E; Rollet S; Fischer H; Brandl A; Kindl P Radiat Prot Dosimetry; 2007; 125(1-4):149-52. PubMed ID: 17656442 [TBL] [Abstract][Full Text] [Related]
8. Efficiency of whole-body counter for various body size calculated by MCNP5 software. Krstic D; Nikezic D Radiat Prot Dosimetry; 2012 Nov; 152(1-3):179-83. PubMed ID: 22923253 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of counting efficiencies of a whole-body counter using Monte Carlo simulation with voxel phantoms. Takahashi M; Kinase S; Kramer R Radiat Prot Dosimetry; 2011 Mar; 144(1-4):407-10. PubMed ID: 21131662 [TBL] [Abstract][Full Text] [Related]
10. Monte Carlo simulation of the movement and detection efficiency of a whole-body counting system using a BOMAB phantom. Bento J; Barros S; Teles P; Neves M; Gonçalves I; Corisco J; Vaz P Radiat Prot Dosimetry; 2012 Mar; 148(4):403-13. PubMed ID: 21525044 [TBL] [Abstract][Full Text] [Related]
11. A comparison between Monte Carlo-calculated and -measured total efficiencies and energy resolution for large plastic scintillators used in whole-body counting. Nilsson J; Isaksson M Radiat Prot Dosimetry; 2011 Mar; 144(1-4):555-9. PubMed ID: 21044997 [TBL] [Abstract][Full Text] [Related]
12. Whole body counter calibration using Monte Carlo modeling with an array of phantom sizes based on national anthropometric reference data. Shypailo RJ; Ellis KJ Phys Med Biol; 2011 May; 56(10):2979-97. PubMed ID: 21490381 [TBL] [Abstract][Full Text] [Related]
13. [Calibration of a whole body counter using Monte Carlo methods]. Breustedt B; Paetz gen Schieck H; Schicha H; Eschner W Z Med Phys; 2004; 14(2):85-94. PubMed ID: 15323286 [TBL] [Abstract][Full Text] [Related]
14. COMPARISON OF COMPUTATIONAL PHANTOMS AND INVESTIGATION OF THE EFFECT OF BIODISTRIBUTION ON ACTIVITY ESTIMATIONS. Cartemo P; Nilsson J; Isaksson M; Nordlund A Radiat Prot Dosimetry; 2016 Nov; 171(3):358-364. PubMed ID: 26410764 [TBL] [Abstract][Full Text] [Related]
15. A methodology to develop computational phantoms with adjustable posture for WBC calibration. Fonseca TC; Bogaerts R; Hunt J; Vanhavere F Phys Med Biol; 2014 Nov; 59(22):6811-25. PubMed ID: 25332309 [TBL] [Abstract][Full Text] [Related]
16. The standfast whole body counter and the sliced BOMAB phantom: efficiency as a function of number of sources and energy modeled by MCNP5. Kramer GH; Capello K Health Phys; 2007 Feb; 92(2):170-5. PubMed ID: 17220718 [TBL] [Abstract][Full Text] [Related]
17. Comparison of various anthropomorphic phantom types for in vivo measurements by means of Monte Carlo simulations. Schläger M Radiat Prot Dosimetry; 2011 Mar; 144(1-4):384-8. PubMed ID: 21030400 [TBL] [Abstract][Full Text] [Related]
18. Study of the counting efficiency of a WBC setup by using a computational 3D human body library in sitting position based on polygonal mesh surfaces. Fonseca TC; Bogaerts R; Lebacq AL; Mihailescu CL; Vanhavere F Health Phys; 2014 Apr; 106(4):484-93. PubMed ID: 24562069 [TBL] [Abstract][Full Text] [Related]
19. CRUCIAL PARAMETERS FOR PROPER SIMULATION OF THE DETECTOR USED IN IN VIVO MEASUREMENTS. Vrba T Radiat Prot Dosimetry; 2016 Sep; 170(1-4):359-63. PubMed ID: 26743254 [TBL] [Abstract][Full Text] [Related]
20. CREATION OF FEMALE COMPUTATIONAL PHANTOMS FOR CALIBRATION OF LUNG COUNTERS. Lombardo PA; Lebacq AL; Vanhavere F Radiat Prot Dosimetry; 2016 Sep; 170(1-4):369-72. PubMed ID: 26763902 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]