These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25147488)

  • 1. DNA stretching on the wall surfaces in curved microchannels with different radii.
    Hsieh SS; Wu FH; Tsai MJ
    Nanoscale Res Lett; 2014; 9(1):382. PubMed ID: 25147488
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electroosmotic flow velocity measurements in a square microchannel.
    Hsieh SS; Lin HC; Lin CY
    Colloid Polym Sci; 2006; 284(11):1275-1286. PubMed ID: 24058237
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct and indirect electroosmotic flow velocity measurements in microchannels.
    Sinton D; Escobedo-Canseco C; Ren L; Li D
    J Colloid Interface Sci; 2002 Oct; 254(1):184-9. PubMed ID: 12702440
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Apparent pore size of polyacrylamide gels: comparison of gels cast and run in Tris-acetate-EDTA and Tris-borate-EDTA buffers.
    Stellwagen NC
    Electrophoresis; 1998 Jul; 19(10):1542-7. PubMed ID: 9719523
    [TBL] [Abstract][Full Text] [Related]  

  • 5. DNA molecule dynamics in converging-diverging microchannels.
    Hsieh SS; Liou JH
    Biotechnol Appl Biochem; 2009 Jan; 52(Pt 1):29-40. PubMed ID: 18251714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Do DNA gel electrophoretic mobilities extrapolate to the free-solution mobility of DNA at zero gel concentration?
    Strutz K; Stellwagen NC
    Electrophoresis; 1998 May; 19(5):635-42. PubMed ID: 9629889
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The greater negative charge density of DNA in tris-borate buffers does not enhance DNA condensation by multivalent cations.
    Schwinefus JJ; Bloomfield VA
    Biopolymers; 2000 Dec; 54(7):572-7. PubMed ID: 10984408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A method for simultaneously determining the zeta potentials of the channel surface and the tracer particles using microparticle image velocimetry technique.
    Yan D; Yang C; Nguyen NT; Huang X
    Electrophoresis; 2006 Feb; 27(3):620-7. PubMed ID: 16456891
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evanescent-wave particle velocimetry measurements of zeta-potentials in fused-silica microchannels.
    Cevheri N; Yoda M
    Electrophoresis; 2013 Jul; 34(13):1950-6. PubMed ID: 23592366
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common buffers, media, and stock solutions.
    Curr Protoc Hum Genet; 2001 May; Appendix 2():Appendix 2D. PubMed ID: 18428217
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semi-Empirical Estimation of Dean Flow Velocity in Curved Microchannels.
    Bayat P; Rezai P
    Sci Rep; 2017 Oct; 7(1):13655. PubMed ID: 29057886
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic-Based Biosensor for Blood Viscosity and Erythrocyte Sedimentation Rate Using Disposable Fluid Delivery System.
    Kang YJ
    Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32093288
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vivo micro particle image velocimetry measurements of blood-plasma in the embryonic avian heart.
    Vennemann P; Kiger KT; Lindken R; Groenendijk BC; Stekelenburg-de Vos S; ten Hagen TL; Ursem NT; Poelmann RE; Westerweel J; Hierck BP
    J Biomech; 2006; 39(7):1191-200. PubMed ID: 15896796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The characterization of a new size-sieving polymeric matrix for the separation of DNA fragments using capillary electrophoresis.
    Siles BA; Collier GB
    J Capillary Electrophor; 1996; 3(6):313-21. PubMed ID: 9384726
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Automated and temperature-controlled micro-PIV measurements enabling long-term-stable microchannel acoustophoresis characterization.
    Augustsson P; Barnkob R; Wereley ST; Bruus H; Laurell T
    Lab Chip; 2011 Dec; 11(24):4152-64. PubMed ID: 21989571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro blood flow in a rectangular PDMS microchannel: experimental observations using a confocal micro-PIV system.
    Lima R; Wada S; Tanaka S; Takeda M; Ishikawa T; Tsubota K; Imai Y; Yamaguchi T
    Biomed Microdevices; 2008 Apr; 10(2):153-67. PubMed ID: 17885805
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA separation by microchip electrophoresis using low-viscosity hydroxypropylmethylcellulose-50 solutions enhanced by polyhydroxy compounds.
    Xu F; Jabasini M; Baba Y
    Electrophoresis; 2002 Oct; 23(20):3608-14. PubMed ID: 12412131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Viscosity Estimation of a Suspension with Rigid Spheres in Circular Microchannels Using Particle Tracking Velocimetry.
    Kawaguchi M; Fukui T; Funamoto K; Tanaka M; Tanaka M; Murata S; Miyauchi S; Hayase T
    Micromachines (Basel); 2019 Oct; 10(10):. PubMed ID: 31590317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Micro-particle image velocimetry for blood flow in thick round glass micro-channels: Channel fabrication and velocity profile characterization.
    Chartrand C; Le AV; Fenech M
    MethodsX; 2023; 10():102110. PubMed ID: 37007623
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrokinetic secondary-flow behavior in a curved microchannel under dissimilar surface conditions.
    Chun MS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Mar; 83(3 Pt 2):036312. PubMed ID: 21517592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.