BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 25147547)

  • 21. Genome sequence of the dioxin-mineralizing bacterium Sphingomonas wittichii RW1.
    Miller TR; Delcher AL; Salzberg SL; Saunders E; Detter JC; Halden RU
    J Bacteriol; 2010 Nov; 192(22):6101-2. PubMed ID: 20833805
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Assessment of nitric oxide (NO) redox reactions contribution to nitrous oxide (N2 O) formation during nitrification using a multispecies metabolic network model.
    Perez-Garcia O; Chandran K; Villas-Boas SG; Singhal N
    Biotechnol Bioeng; 2016 May; 113(5):1124-36. PubMed ID: 26551878
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolism of nitrodiphenyl ether herbicides by dioxin-degrading bacterium Sphingomonas wittichii RW1.
    Keum YS; Lee YJ; Kim JH
    J Agric Food Chem; 2008 Oct; 56(19):9146-51. PubMed ID: 18778066
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of a periplasmic quinoprotein from Sphingomonas wittichii that functions as aldehyde dehydrogenase.
    Zeiser J; Mühlenbeck LH; Schweiger P; Deppenmeier U
    Appl Microbiol Biotechnol; 2014 Mar; 98(5):2067-79. PubMed ID: 23828599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Genetic and environmental controls on nitrous oxide accumulation in lakes.
    Saarenheimo J; Rissanen AJ; Arvola L; Nykänen H; Lehmann MF; Tiirola M
    PLoS One; 2015; 10(3):e0121201. PubMed ID: 25756328
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Genome-wide analysis of Sphingomonas wittichii RW1 behaviour during inoculation and growth in contaminated sand.
    Moreno-Forero SK; van der Meer JR
    ISME J; 2015 Jan; 9(1):150-65. PubMed ID: 24936762
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Novel Three-Component Phenazine-1-Carboxylic Acid 1,2-Dioxygenase in Sphingomonas wittichii DP58.
    Zhao Q; Hu HB; Wang W; Huang XQ; Zhang XH
    Appl Environ Microbiol; 2017 May; 83(9):. PubMed ID: 28188209
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genome-centric metagenomics resolves microbial diversity and prevalent truncated denitrification pathways in a denitrifying PAO-enriched bioprocess.
    Gao H; Mao Y; Zhao X; Liu WT; Zhang T; Wells G
    Water Res; 2019 May; 155():275-287. PubMed ID: 30852315
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sphingomonas wittichii Strain RW1 Genome-Wide Gene Expression Shifts in Response to Dioxins and Clay.
    Chai B; Tsoi TV; Iwai S; Liu C; Fish JA; Gu C; Johnson TA; Zylstra G; Teppen BJ; Li H; Hashsham SA; Boyd SA; Cole JR; Tiedje JM
    PLoS One; 2016; 11(6):e0157008. PubMed ID: 27309357
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel P450nor Gene Detection Assay Used To Characterize the Prevalence and Diversity of Soil Fungal Denitrifiers.
    Novinscak A; Goyer C; Zebarth BJ; Burton DL; Chantigny MH; Filion M
    Appl Environ Microbiol; 2016 Aug; 82(15):4560-4569. PubMed ID: 27208113
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome-wide transposon insertion scanning of environmental survival functions in the polycyclic aromatic hydrocarbon degrading bacterium Sphingomonas wittichii RW1.
    Roggo C; Coronado E; Moreno-Forero SK; Harshman K; Weber J; van der Meer JR
    Environ Microbiol; 2013 Oct; 15(10):2681-95. PubMed ID: 23601288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Nitric oxide and nitrous oxide production in anaerobic/anoxic nitrite-denitrifying phosphorus removal process: effect of phosphorus concentration.
    Wang S; Zhao J; Ding X; Li X
    Environ Sci Pollut Res Int; 2020 Dec; 27(36):45925-45937. PubMed ID: 32808124
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biotransformation of 1,2,3-tri- and 1,2,3,4,7,8-hexachlorodibenzo-p- dioxin by Sphingomonas wittichii strain RW1.
    Nam IH; Kim YM; Schmidt S; Chang YS
    Appl Environ Microbiol; 2006 Jan; 72(1):112-6. PubMed ID: 16391032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanisms of N2O production in biological wastewater treatment under nitrifying and denitrifying conditions.
    Wunderlin P; Mohn J; Joss A; Emmenegger L; Siegrist H
    Water Res; 2012 Mar; 46(4):1027-37. PubMed ID: 22227243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of genes potentially involved in solute stress response in Sphingomonas wittichii RW1 by transposon mutant recovery.
    Coronado E; Roggo C; van der Meer JR
    Front Microbiol; 2014; 5():585. PubMed ID: 25408691
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions.
    Otte S; Grobben NG; Robertson LA; Jetten MS; Kuenen JG
    Appl Environ Microbiol; 1996 Jul; 62(7):2421-6. PubMed ID: 8779582
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-type (NirS) nitrite reductase genes under denitrifying conditions.
    Sánchez C; Minamisawa K
    FEMS Microbiol Lett; 2018 Mar; 365(5):. PubMed ID: 29361081
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characterization of Denitrifying Community for Application in Reducing Nitrogen: a Comparison of nirK and nirS Gene Diversity and Abundance.
    Wang Y; Qi L; Huang R; Wang F; Wang Z; Gao M
    Appl Biochem Biotechnol; 2020 Sep; 192(1):22-41. PubMed ID: 32212109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hybrid Nitrous Oxide Production from a Partial Nitrifying Bioreactor: Hydroxylamine Interactions with Nitrite.
    Terada A; Sugawara S; Hojo K; Takeuchi Y; Riya S; Harper WF; Yamamoto T; Kuroiwa M; Isobe K; Katsuyama C; Suwa Y; Koba K; Hosomi M
    Environ Sci Technol; 2017 Mar; 51(5):2748-2756. PubMed ID: 28164698
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comparison of Nitrogen Oxide Metabolism among Diverse Ammonia-Oxidizing Bacteria.
    Kozlowski JA; Kits KD; Stein LY
    Front Microbiol; 2016; 7():1090. PubMed ID: 27462312
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.