These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

352 related articles for article (PubMed ID: 25147920)

  • 1. A CRISPR-based approach for proteomic analysis of a single genomic locus.
    Waldrip ZJ; Byrum SD; Storey AJ; Gao J; Byrd AK; Mackintosh SG; Wahls WP; Taverna SD; Raney KD; Tackett AJ
    Epigenetics; 2014 Sep; 9(9):1207-11. PubMed ID: 25147920
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Purification of a specific native genomic locus for proteomic analysis.
    Byrum SD; Taverna SD; Tackett AJ
    Nucleic Acids Res; 2013 Nov; 41(20):e195. PubMed ID: 24030711
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of specific chromatin loci for proteomic analysis.
    Byrum SD; Taverna SD; Tackett AJ
    Methods Mol Biol; 2015; 1228():83-92. PubMed ID: 25311124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ChAP-MS: a method for identification of proteins and histone posttranslational modifications at a single genomic locus.
    Byrum SD; Raman A; Taverna SD; Tackett AJ
    Cell Rep; 2012 Jul; 2(1):198-205. PubMed ID: 22840409
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of Artificial System to Induce Chromatin Loosening in
    Yamamoto R; Sato G; Amai T; Ueda M; Kuroda K
    Biomolecules; 2022 Aug; 12(8):. PubMed ID: 36009033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Proteomic identification of histone post-translational modifications and proteins enriched at a DNA double-strand break.
    Wang P; Byrum S; Fowler FC; Pal S; Tackett AJ; Tyler JK
    Nucleic Acids Res; 2017 Nov; 45(19):10923-10940. PubMed ID: 29036368
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decoding the chromatin proteome of a single genomic locus by DNA sequencing.
    Korthout T; Poramba-Liyanage DW; van Kruijsbergen I; Verzijlbergen KF; van Gemert FPA; van Welsem T; van Leeuwen F
    PLoS Biol; 2018 Jul; 16(7):e2005542. PubMed ID: 30005073
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Proteomic characterization of the arsenic response locus in S. cerevisiae.
    West KL; Byrum SD; Mackintosh SG; Edmondson RD; Taverna SD; Tackett AJ
    Epigenetics; 2019 Feb; 14(2):130-145. PubMed ID: 30739529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tandem affinity purification of histones, coupled to mass spectrometry, identifies associated proteins and new sites of post-translational modification in Saccharomyces cerevisiae.
    Valero ML; Sendra R; Pamblanco M
    J Proteomics; 2016 Mar; 136():183-92. PubMed ID: 26778144
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation of specific genomic regions and identification of associated molecules by engineered DNA-binding molecule-mediated chromatin immunoprecipitation (enChIP) using CRISPR.
    Fujita T; Fujii H
    Methods Mol Biol; 2015; 1288():43-52. PubMed ID: 25827874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. gRNA-transient expression system for simplified gRNA delivery in CRISPR/Cas9 genome editing.
    Easmin F; Hassan N; Sasano Y; Ekino K; Taguchi H; Harashima S
    J Biosci Bioeng; 2019 Sep; 128(3):373-378. PubMed ID: 31010727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploiting off-targeting in guide-RNAs for CRISPR systems for simultaneous editing of multiple genes.
    Ferreira R; Gatto F; Nielsen J
    FEBS Lett; 2017 Oct; 591(20):3288-3295. PubMed ID: 28884816
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9.
    Mans R; Wijsman M; Daran-Lapujade P; Daran JM
    FEMS Yeast Res; 2018 Nov; 18(7):. PubMed ID: 29860374
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Target-dependent nickase activities of the CRISPR-Cas nucleases Cpf1 and Cas9.
    Fu BXH; Smith JD; Fuchs RT; Mabuchi M; Curcuru J; Robb GB; Fire AZ
    Nat Microbiol; 2019 May; 4(5):888-897. PubMed ID: 30833733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. dCas9-targeted locus-specific protein isolation method identifies histone gene regulators.
    Tsui C; Inouye C; Levy M; Lu A; Florens L; Washburn MP; Tjian R
    Proc Natl Acad Sci U S A; 2018 Mar; 115(12):E2734-E2741. PubMed ID: 29507191
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dead Cas Systems: Types, Principles, and Applications.
    Brezgin S; Kostyusheva A; Kostyushev D; Chulanov V
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31801211
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Live-Cell CRISPR Imaging in Plant Cells with a Telomere-Specific Guide RNA.
    Khosravi S; Dreissig S; Schindele P; Wolter F; Rutten T; Puchta H; Houben A
    Methods Mol Biol; 2020; 2166():343-356. PubMed ID: 32710419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein modifications in transcription elongation.
    Fuchs SM; Laribee RN; Strahl BD
    Biochim Biophys Acta; 2009 Jan; 1789(1):26-36. PubMed ID: 18718879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Global proteomic analysis of Saccharomyces cerevisiae identifies molecular pathways of histone modifications.
    Jackson J; Shilatifard A
    Methods Mol Biol; 2009; 548():175-86. PubMed ID: 19521825
    [TBL] [Abstract][Full Text] [Related]  

  • 20. TEAD4 regulates trophectoderm differentiation upstream of CDX2 in a GATA3-independent manner in the human preimplantation embryo.
    Stamatiadis P; Cosemans G; Boel A; Menten B; De Sutter P; Stoop D; Chuva de Sousa Lopes SM; Lluis F; Coucke P; Heindryckx B
    Hum Reprod; 2022 Jul; 37(8):1760-1773. PubMed ID: 35700449
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.