BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 2514800)

  • 21. The NADP-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase is not expressed in Spodoptera frugiperda cells.
    Tremblay GB; Mejia NR; MacKenzie RE
    J Biol Chem; 1992 Apr; 267(12):8281-5. PubMed ID: 1569082
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Evidence for overlapping active sites in a multifunctional enzyme: immunochemical and chemical modification studies on C1-tetrahydrofolate synthase from Saccharomyces cerevisiae.
    Appling DR; Rabinowitz JC
    Biochemistry; 1985 Jul; 24(14):3540-7. PubMed ID: 3899168
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mthfd1 is an essential gene in mice and alters biomarkers of impaired one-carbon metabolism.
    MacFarlane AJ; Perry CA; Girnary HH; Gao D; Allen RH; Stabler SP; Shane B; Stover PJ
    J Biol Chem; 2009 Jan; 284(3):1533-9. PubMed ID: 19033438
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comparative effects of folate antagonists versus enzymatic folate depletion on folate and thymidine enzymes in cultured mammalian cells.
    Chello PL; McQueen CA; DeAngelis LM; Bertino JR
    Cancer Treat Rep; 1977 Jul; 61(4):539-48. PubMed ID: 195727
    [No Abstract]   [Full Text] [Related]  

  • 25. The effect of nitrous oxide-induced inactivation of vitamin B12 on the activity of formyl-methenyl-methylenetetrahydrofolate synthetase, methylene-tetrahydrofolate reductase and formiminotetrahydrofolate transferase.
    Perry J; Deacon R; Lumb M; Chanarin I
    Biochem Biophys Res Commun; 1980 Dec; 97(4):1329-33. PubMed ID: 6971097
    [No Abstract]   [Full Text] [Related]  

  • 26. Methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase-formyltetrahydrofolate synthetase from porcine liver. Interaction between the dehydrogenase and cyclohydrolase activities of the multifunctional enzyme.
    Cohen L; Mackenzie RE
    Biochim Biophys Acta; 1978 Feb; 522(2):311-7. PubMed ID: 23838
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Role of cytosolic serine hydroxymethyltransferase in one-carbon metabolism in Neurospora crassa.
    Jeong SS; Schirch V
    Arch Biochem Biophys; 1996 Nov; 335(2):333-41. PubMed ID: 8914930
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Time-course studies on the effects of oestradiol administration on the activity of some folate-metabolizing enzymes in chicken liver.
    Burns RA; Jackson N
    Comp Biochem Physiol B; 1982; 71(3):351-5. PubMed ID: 7067401
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Crystal structure at 2.4 A resolution of E. coli serine hydroxymethyltransferase in complex with glycine substrate and 5-formyl tetrahydrofolate.
    Scarsdale JN; Radaev S; Kazanina G; Schirch V; Wright HT
    J Mol Biol; 2000 Feb; 296(1):155-68. PubMed ID: 10656824
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Carbamyl phosphate-dependent ATP synthesis catalyzed by formyltetrahydrofolate synthetase.
    Buttlaire DH; Balfe CA; Wendland MF; Himes RH
    Biochim Biophys Acta; 1979 Apr; 567(2):453-63. PubMed ID: 444533
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Assaying plant formate-tetrahydrofolate ligase with monoglutamylated and polyglutamylated substrates using a fluorescence-HPLC based method.
    Saeheng S; Roje S
    Methods Enzymol; 2023; 680():85-100. PubMed ID: 36710024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of C metabolism by L-methionine in Saccharomyces cerevisiae.
    Lor KL; Cossins EA
    Biochem J; 1972 Dec; 130(3):773-83. PubMed ID: 4198357
    [TBL] [Abstract][Full Text] [Related]  

  • 33. 5-Formyltetrahydrofolate polyglutamates are slow tight binding inhibitors of serine hydroxymethyltransferase.
    Stover P; Schirch V
    J Biol Chem; 1991 Jan; 266(3):1543-50. PubMed ID: 1988436
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Serine hydroxymethyltransferase: role of glu75 and evidence that serine is cleaved by a retroaldol mechanism.
    Szebenyi DM; Musayev FN; di Salvo ML; Safo MK; Schirch V
    Biochemistry; 2004 Jun; 43(22):6865-76. PubMed ID: 15170323
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Enzymatic determination of folylpolyglutamate pools.
    Schirch V
    Methods Enzymol; 1997; 281():77-81. PubMed ID: 9250969
    [No Abstract]   [Full Text] [Related]  

  • 36. Nuclear magnetic resonance studies of formyltetrahydrofolate synthetase interactions with formate and methylammonium ion.
    Wendland MF; Stevens TH; Buttlaire DH; Everett GW; Himes RH
    Biochemistry; 1983 Feb; 22(4):819-26. PubMed ID: 6838826
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Serine transhydroxymethylase: evidence for a sequential random mechanism.
    Schirch LV; Tatum CM; Benkovic SJ
    Biochemistry; 1977 Feb; 16(3):410-9. PubMed ID: 836793
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Formyltetrahydrofolate synthetase-catalyzed formation of ATP from carbamyl phosphate and ADP. Evidence for a formyl phosphate intermediate in the enzyme's catalytic mechanism.
    Buttlaire DH; Himes RH; Reed GH
    J Biol Chem; 1976 Jul; 251(13):4159-61. PubMed ID: 932026
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Resistance of Pediococcus cerevisiae to amethopterin as a consequence of changes in enzymatic activity and cell permeability. I. Dihydrofolate reductase, thymidylate synthetase and formyltetrahydrofolate synthetase in amethopterin-resistant and -sensitive strains of Pediococcus cerevisiae.
    Mandelbaum-Shavit F
    Biochim Biophys Acta; 1976 May; 428(3):664-73. PubMed ID: 6054
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-directed mutagenesis of yeast C1-tetrahydrofolate synthase: analysis of an overlapping active site in a multifunctional enzyme.
    Barlowe CK; Williams ME; Rabinowitz JC; Appling DR
    Biochemistry; 1989 Mar; 28(5):2099-106. PubMed ID: 2541774
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.