BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25148021)

  • 1. The primordial thymus: everything you need under one roof.
    Anderson G; Baik S
    Immunity; 2014 Aug; 41(2):178-80. PubMed ID: 25148021
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conversion of the thymus into a bipotent lymphoid organ by replacement of FOXN1 with its paralog, FOXN4.
    Swann JB; Weyn A; Nagakubo D; Bleul CC; Toyoda A; Happe C; Netuschil N; Hess I; Haas-Assenbaum A; Taniguchi Y; Schorpp M; Boehm T
    Cell Rep; 2014 Aug; 8(4):1184-97. PubMed ID: 25131198
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evolution of thymopoietic microenvironments.
    Morimoto R; Swann J; Nusser A; Trancoso I; Schorpp M; Boehm T
    Open Biol; 2021 Feb; 11(2):200383. PubMed ID: 33622100
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biological significance of FoxN1 gain-of-function mutations during T and B lymphopoiesis in juvenile mice.
    Ruan L; Zhang Z; Mu L; Burnley P; Wang L; Coder B; Zhuge Q; Su DM
    Cell Death Dis; 2014 Oct; 5(10):e1457. PubMed ID: 25299782
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evidence for a functional second thymus in mice.
    Terszowski G; Müller SM; Bleul CC; Blum C; Schirmbeck R; Reimann J; Pasquier LD; Amagai T; Boehm T; Rodewald HR
    Science; 2006 Apr; 312(5771):284-7. PubMed ID: 16513945
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Oxygen Submersion Fetal Thymus Organ Cultures Enable FOXN1-Dependent and -Independent Support of T Lymphopoiesis.
    Han J; Zúñiga-Pflücker JC
    Front Immunol; 2021; 12():652665. PubMed ID: 33859647
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoprotegerin-Mediated Homeostasis of Rank+ Thymic Epithelial Cells Does Not Limit Foxp3+ Regulatory T Cell Development.
    McCarthy NI; Cowan JE; Nakamura K; Bacon A; Baik S; White AJ; Parnell SM; Jenkinson EJ; Jenkinson WE; Anderson G
    J Immunol; 2015 Sep; 195(6):2675-82. PubMed ID: 26254339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thymic regulatory T cell development: role of signalling pathways and transcription factors.
    Engel M; Sidwell T; Vasanthakumar A; Grigoriadis G; Banerjee A
    Clin Dev Immunol; 2013; 2013():617595. PubMed ID: 24187564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zebrafish mutants with disrupted early T-cell and thymus development identified in early pressure screen.
    Trede NS; Ota T; Kawasaki H; Paw BH; Katz T; Demarest B; Hutchinson S; Zhou Y; Hersey C; Zapata A; Amemiya CT; Zon LI
    Dev Dyn; 2008 Sep; 237(9):2575-84. PubMed ID: 18729230
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thymic epithelial cell-derived signals control B progenitor formation and proliferation in the thymus by regulating Let-7 and Arid3a.
    Xiao S; Zhang W; Manley NR
    PLoS One; 2018; 13(2):e0193188. PubMed ID: 29462197
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of FoxN1, p63 and AIRE on the process of age-related thymus involution: An update].
    Wang J; Li J; Yao X
    Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi; 2023 Jan; 39(1):88-94. PubMed ID: 36631020
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Overexpression of Foxn1 attenuates age-associated thymic involution and prevents the expansion of peripheral CD4 memory T cells.
    Zook EC; Krishack PA; Zhang S; Zeleznik-Le NJ; Firulli AB; Witte PL; Le PT
    Blood; 2011 Nov; 118(22):5723-31. PubMed ID: 21908422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. To be or not to be a Treg cell: lineage decisions controlled by epigenetic mechanisms.
    Toker A; Huehn J
    Sci Signal; 2011 Feb; 4(158):pe4. PubMed ID: 21285410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A thymus candidate in lampreys.
    Bajoghli B; Guo P; Aghaallaei N; Hirano M; Strohmeier C; McCurley N; Bockman DE; Schorpp M; Cooper MD; Boehm T
    Nature; 2011 Feb; 470(7332):90-4. PubMed ID: 21293377
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Egress of mature murine regulatory T cells from the thymus requires RelA.
    Fukazawa T; Hiraiwa N; Umemura T; Mise-Omata S; Obata Y; Doi T
    J Immunol; 2015 Apr; 194(7):3020-8. PubMed ID: 25725099
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Epigenetic control of thymic Treg-cell development.
    Kitagawa Y; Ohkura N; Sakaguchi S
    Eur J Immunol; 2015 Jan; 45(1):11-6. PubMed ID: 25348287
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The thymus as an inductive site for T lymphopoiesis.
    Ciofani M; Zúñiga-Pflücker JC
    Annu Rev Cell Dev Biol; 2007; 23():463-93. PubMed ID: 17506693
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage?
    Huehn J; Polansky JK; Hamann A
    Nat Rev Immunol; 2009 Feb; 9(2):83-9. PubMed ID: 19114986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gene targeting of VEGF-A in thymus epithelium disrupts thymus blood vessel architecture.
    Müller SM; Terszowski G; Blum C; Haller C; Anquez V; Kuschert S; Carmeliet P; Augustin HG; Rodewald HR
    Proc Natl Acad Sci U S A; 2005 Jul; 102(30):10587-92. PubMed ID: 16027358
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular evidence for a thymus-independent partial T cell development in a FOXN1-/- athymic human fetus.
    Fusco A; Panico L; Gorrese M; Bianchino G; Barone MV; Grieco V; Vitiello L; D'Assante R; Romano R; Palamaro L; Scalia G; Vecchio LD; Pignata C
    PLoS One; 2013; 8(12):e81786. PubMed ID: 24349129
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.