BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 25148021)

  • 41. Identification of an Intronic Regulatory Element Necessary for Tissue-Specific Expression of
    Larsen BM; Cowan JE; Wang Y; Tanaka Y; Zhao Y; Voisin B; Constantinides MG; Nagao K; Belkaid Y; Awasthi P; Takahama Y; Bhandoola A
    J Immunol; 2019 Aug; 203(3):686-695. PubMed ID: 31243087
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Ovine fetal thymus response to lipopolysaccharide-induced chorioamnionitis and antenatal corticosteroids.
    Kuypers E; Collins JJ; Jellema RK; Wolfs TG; Kemp MW; Nitsos I; Pillow JJ; Polglase GR; Newnham JP; Germeraad WT; Kallapur SG; Jobe AH; Kramer BW
    PLoS One; 2012; 7(5):e38257. PubMed ID: 22693607
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The Foxn1-dependent transcripts PCOLCE2 and mPPP1R16B are not required for normal thymopoiesis.
    Heinzel K; Bleul CC
    Eur J Immunol; 2007 Sep; 37(9):2562-71. PubMed ID: 17683113
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Glucocorticoid hormone differentially modulates the in vitro expansion and cytokine profile of thymic and splenic Treg cells.
    Pap R; Ugor E; Litvai T; Prenek L; Najbauer J; Németh P; Berki T
    Immunobiology; 2019 Mar; 224(2):285-295. PubMed ID: 30612787
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Nonredundant roles for Stat5a/b in directly regulating Foxp3.
    Yao Z; Kanno Y; Kerenyi M; Stephens G; Durant L; Watford WT; Laurence A; Robinson GW; Shevach EM; Moriggl R; Hennighausen L; Wu C; O'Shea JJ
    Blood; 2007 May; 109(10):4368-75. PubMed ID: 17227828
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Foxp1 is an essential transcriptional regulator for the generation of quiescent naive T cells during thymocyte development.
    Feng X; Ippolito GC; Tian L; Wiehagen K; Oh S; Sambandam A; Willen J; Bunte RM; Maika SD; Harriss JV; Caton AJ; Bhandoola A; Tucker PW; Hu H
    Blood; 2010 Jan; 115(3):510-8. PubMed ID: 19965654
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Treg cells meet their limit.
    Hogquist KA; Moran AE
    Nat Immunol; 2009 Jun; 10(6):565-6. PubMed ID: 19448655
    [No Abstract]   [Full Text] [Related]  

  • 48. Single-Cell RNA Sequencing Resolves Spatiotemporal Development of Pre-thymic Lymphoid Progenitors and Thymus Organogenesis in Human Embryos.
    Zeng Y; Liu C; Gong Y; Bai Z; Hou S; He J; Bian Z; Li Z; Ni Y; Yan J; Huang T; Shi H; Ma C; Chen X; Wang J; Bian L; Lan Y; Liu B; Hu H
    Immunity; 2019 Nov; 51(5):930-948.e6. PubMed ID: 31604687
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inducible gene expression in fetal thymic epithelium: a new BAC transgenic model.
    Fiorini E; Ferrero I; Poisson C; Scarpellino L; Luther SA; MacDonald HR
    Genesis; 2013 Oct; 51(10):717-24. PubMed ID: 23832856
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Incorporation of sulfate by the mouse thymus: its relation to secretion by medullary epithelial cells and to thymic lymphopoiesis.
    Clark SL
    J Exp Med; 1968 Nov; 128(5):927-57. PubMed ID: 5682945
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Limits to in vivo fate changes of epithelia in thymus and parathyroid by ectopic expression of transcription factors Gcm2 and Foxn1.
    Nagakubo D; Hirakawa M; Iwanami N; Boehm T
    Sci Rep; 2022 Aug; 12(1):13554. PubMed ID: 35941210
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Foxo proteins cooperatively control the differentiation of Foxp3+ regulatory T cells.
    Ouyang W; Beckett O; Ma Q; Paik JH; DePinho RA; Li MO
    Nat Immunol; 2010 Jul; 11(7):618-27. PubMed ID: 20467422
    [TBL] [Abstract][Full Text] [Related]  

  • 53. B-cell development in the thymus is limited by inhibitory signals from the thymic microenvironment.
    Hashimoto Y; Montecino-Rodriguez E; Leathers H; Stephan RP; Dorshkind K
    Blood; 2002 Nov; 100(10):3504-11. PubMed ID: 12393710
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Impaired thymic selection and abnormal antigen-specific T cell responses in Foxn1(Δ/Δ) mutant mice.
    Xiao S; Manley NR
    PLoS One; 2010 Nov; 5(11):e15396. PubMed ID: 21079757
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rag1 and rag2 gene expressions identify lymphopoietic tissues in juvenile and adult Chinese giant salamander (Andrias davidianus).
    Jiang N; Fan Y; Zhou Y; Liu W; Robert J; Zeng L
    Dev Comp Immunol; 2018 Oct; 87():24-35. PubMed ID: 29800626
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Foxn1 is not essential for T-cell development in teleosts.
    Schorpp M; Swann JB; Hess I; Ho HC; Pietsch TW; Boehm T
    Eur J Immunol; 2023 Dec; 53(12):e2350725. PubMed ID: 37724048
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Aire and Foxp3 expression in a particular microenvironment for T cell differentiation.
    Hansenne I; Louis C; Martens H; Dorban G; Charlet-Renard C; Peterson P; Geenen V
    Neuroimmunomodulation; 2009 Jan; 16(1):35-44. PubMed ID: 19077444
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Thymic stromal lymphopoietin-activated plasmacytoid dendritic cells induce the generation of FOXP3+ regulatory T cells in human thymus.
    Hanabuchi S; Ito T; Park WR; Watanabe N; Shaw JL; Roman E; Arima K; Wang YH; Voo KS; Cao W; Liu YJ
    J Immunol; 2010 Mar; 184(6):2999-3007. PubMed ID: 20173030
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Role of the thymus in spontaneous development of a multi-organ autoimmune disease in human immune system mice.
    Khosravi-Maharlooei M; Li H; Hoelzl M; Zhao G; Ruiz A; Misra A; Li Y; Teteloshvili N; Nauman G; Danzl N; Ding X; Pinker EY; Obradovic A; Yang YG; Iuga A; Creusot RJ; Winchester R; Sykes M
    J Autoimmun; 2021 May; 119():102612. PubMed ID: 33611150
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Nude thymic rudiment lacking functional foxn1 resembles respiratory epithelium.
    Dooley J; Erickson M; Roelink H; Farr AG
    Dev Dyn; 2005 Aug; 233(4):1605-12. PubMed ID: 15986478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.