These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 25148328)

  • 1. Interfacing superconducting qubits and telecom photons via a rare-earth-doped crystal.
    O'Brien C; Lauk N; Blum S; Morigi G; Fleischhauer M
    Phys Rev Lett; 2014 Aug; 113(6):063603. PubMed ID: 25148328
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanophotonic coherent light-matter interfaces based on rare-earth-doped crystals.
    Zhong T; Kindem JM; Miyazono E; Faraon A
    Nat Commun; 2015 Sep; 6():8206. PubMed ID: 26364586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coherent storage of microwave excitations in rare-earth nuclear spins.
    Wolfowicz G; Maier-Flaig H; Marino R; Ferrier A; Vezin H; Morton JJ; Goldner P
    Phys Rev Lett; 2015 May; 114(17):170503. PubMed ID: 25978214
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electron Spin Coherence in Optically Excited States of Rare-Earth Ions for Microwave to Optical Quantum Transducers.
    Welinski S; Woodburn PJT; Lauk N; Cone RL; Simon C; Goldner P; Thiel CW
    Phys Rev Lett; 2019 Jun; 122(24):247401. PubMed ID: 31322401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacing Superconducting Qubits and Single Optical Photons Using Molecules in Waveguides.
    Das S; Elfving VE; Faez S; Sørensen AS
    Phys Rev Lett; 2017 Apr; 118(14):140501. PubMed ID: 28430479
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anisotropic rare-earth spin ensemble strongly coupled to a superconducting resonator.
    Probst S; Rotzinger H; Wünsch S; Jung P; Jerger M; Siegel M; Ustinov AV; Bushev PA
    Phys Rev Lett; 2013 Apr; 110(15):157001. PubMed ID: 25167299
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles.
    Zhong T; Kindem JM; Rochman J; Faraon A
    Nat Commun; 2017 Jan; 8():14107. PubMed ID: 28090078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupling superconducting qubits via a cavity bus.
    Majer J; Chow JM; Gambetta JM; Koch J; Johnson BR; Schreier JA; Frunzio L; Schuster DI; Houck AA; Wallraff A; Blais A; Devoret MH; Girvin SM; Schoelkopf RJ
    Nature; 2007 Sep; 449(7161):443-7. PubMed ID: 17898763
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Photonic quantum state transfer between a cold atomic gas and a crystal.
    Maring N; Farrera P; Kutluer K; Mazzera M; Heinze G; de Riedmatten H
    Nature; 2017 Nov; 551(7681):485-488. PubMed ID: 29168806
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity.
    Sillanpää MA; Park JI; Simmonds RW
    Nature; 2007 Sep; 449(7161):438-42. PubMed ID: 17898762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum memory for microwave photons in an inhomogeneously broadened spin ensemble.
    Julsgaard B; Grezes C; Bertet P; Mølmer K
    Phys Rev Lett; 2013 Jun; 110(25):250503. PubMed ID: 23829721
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Demonstration of atomic frequency comb memory for light with spin-wave storage.
    Afzelius M; Usmani I; Amari A; Lauritzen B; Walther A; Simon C; Sangouard N; Minár J; de Riedmatten H; Gisin N; Kröll S
    Phys Rev Lett; 2010 Jan; 104(4):040503. PubMed ID: 20366694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Storage of Frequency-Multiplexed Heralded Single Photons.
    Seri A; Lago-Rivera D; Lenhard A; Corrielli G; Osellame R; Mazzera M; de Riedmatten H
    Phys Rev Lett; 2019 Aug; 123(8):080502. PubMed ID: 31491206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherent properties of single rare-earth spin qubits.
    Siyushev P; Xia K; Reuter R; Jamali M; Zhao N; Yang N; Duan C; Kukharchyk N; Wieck AD; Kolesov R; Wrachtrup J
    Nat Commun; 2014 May; 5():3895. PubMed ID: 24826968
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of quantum coherence excitation and coherence transfer in an inhomogeneously broadened rare-earth doped solid.
    Ham BS
    Opt Express; 2008 Apr; 16(8):5350-61. PubMed ID: 18542637
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Superconducting Grid-Bus Surface Code Architecture for Hole-Spin Qubits.
    Nigg SE; Fuhrer A; Loss D
    Phys Rev Lett; 2017 Apr; 118(14):147701. PubMed ID: 28430480
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Entanglement of two superconducting qubits in a waveguide cavity via monochromatic two-photon excitation.
    Poletto S; Gambetta JM; Merkel ST; Smolin JA; Chow JM; Córcoles AD; Keefe GA; Rothwell MB; Rozen JR; Abraham DW; Rigetti C; Steffen M
    Phys Rev Lett; 2012 Dec; 109(24):240505. PubMed ID: 23368296
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultraslow light propagation in an inhomogeneously broadened rare-earth ion-doped crystal.
    Baldit E; Bencheikh K; Monnier P; Levenson JA; Rouget V
    Phys Rev Lett; 2005 Sep; 95(14):143601. PubMed ID: 16241652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cavity-enhanced spectroscopy of a rare-earth-ion-doped crystal: observation of a power law for inhomogeneous broadening.
    Goto H; Nakamura S; Kujiraoka M; Ichimura K
    Opt Express; 2013 Oct; 21(20):24332-43. PubMed ID: 24104343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Wavelength transduction from a 3D microwave cavity to telecom using piezoelectric optomechanical crystals.
    Ramp H; Clark TJ; Hauer BD; Doolin CD; Balram KC; Srinivasan K; Davis JP
    Appl Phys Lett; 2020; 116(17):. PubMed ID: 34815582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.