These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 25148420)

  • 1. Direct measurement of chemical distributions in heterogeneous coatings.
    Cooley KA; Pearl TP; Varady MJ; Mantooth BA; Willis MP
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):16289-96. PubMed ID: 25148420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vapor Sorption-Desorption Phenomena of HD and GB Simulants from Polyurethane Thin Films on Aluminum Oxide via a Quartz Crystal Microbalance.
    Kittle JD; Grasdal EN; Kim SM; Levin NR; Davis PA; Kittle AL; Kittle IJ; Mulcahy JA; Keith BR
    ACS Omega; 2022 Jul; 7(26):22735-22742. PubMed ID: 35811928
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of chemical agent transport in paints.
    Willis MP; Gordon W; Lalain T; Mantooth B
    J Hazard Mater; 2013 Sep; 260():907-13. PubMed ID: 23872337
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An inverse analysis approach to the characterization of chemical transport in paints.
    Willis MP; Stevenson SM; Pearl TP; Mantooth BA
    J Vis Exp; 2014 Aug; (90):. PubMed ID: 25226346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. UV-Cured Highly Crosslinked Polyurethane Acrylate to Serve as a Barrier against Chemical Warfare Agent Simulants.
    Chen X; Xiao L; Li H; Cui Y; Wang G
    Polymers (Basel); 2024 Jun; 16(11):. PubMed ID: 38891524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Raman Spectroscopic Detection for Simulants of Chemical Warfare Agents Using a Spatial Heterodyne Spectrometer.
    Hu G; Xiong W; Luo H; Shi H; Li Z; Shen J; Fang X; Xu B; Zhang J
    Appl Spectrosc; 2018 Jan; 72(1):151-158. PubMed ID: 28627233
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Binding affinity and decontamination of dermal decontamination gel to model chemical warfare agent simulants.
    Cao Y; Elmahdy A; Zhu H; Hui X; Maibach H
    J Appl Toxicol; 2018 May; 38(5):724-733. PubMed ID: 29315700
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Highly Cross-linked Epoxy Coating for Barring Organophosphate Chemical Warfare Agent Permeation.
    Wu G; Zhang D; Xu W; Zhang H; Chen L; Zheng Y; Xin Y; Li H; Cui Y
    ACS Omega; 2022 Apr; 7(14):12354-12364. PubMed ID: 35449950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Decontamination of chemical-warfare agent simulants by polymer surfaces doped with the singlet oxygen generator zinc octaphenoxyphthalocyanine.
    Gephart RT; Coneski PN; Wynne JH
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10191-200. PubMed ID: 24060426
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Secondary ionization of chemical warfare agent simulants: atmospheric pressure ion mobility time-of-flight mass spectrometry.
    Steiner WE; Clowers BH; Haigh PE; Hill HH
    Anal Chem; 2003 Nov; 75(22):6068-76. PubMed ID: 14615983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using cheminformatics to find simulants for chemical warfare agents.
    Lavoie J; Srinivasan S; Nagarajan R
    J Hazard Mater; 2011 Oct; 194():85-91. PubMed ID: 21872989
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Graphene Oxide-Based Membrane as a Protective Barrier against Toxic Vapors and Gases.
    Peng C; Iqbal Z; Sirkar KK; Peterson GW
    ACS Appl Mater Interfaces; 2020 Mar; 12(9):11094-11103. PubMed ID: 32078289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physics-based agent to simulant correlations for vapor phase mass transport.
    Willis MP; Varady MJ; Pearl TP; Fouse JC; Riley PC; Mantooth BA; Lalain TA
    J Hazard Mater; 2013 Dec; 263 Pt 2():479-85. PubMed ID: 24225584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recent advances in the use of graphene-family nanoadsorbents for removal of toxic pollutants from wastewater.
    Chowdhury S; Balasubramanian R
    Adv Colloid Interface Sci; 2014 Feb; 204():35-56. PubMed ID: 24412086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation, characterization and evaluation of the zinc titanate and silver nitrate incorporated wipes for topical chemical and biological decontamination.
    Sharma N; Chaudhary M; Butola BS; Jeyabalaji JK; Pathak DP; Sharma RK
    Mater Sci Eng C Mater Biol Appl; 2019 Mar; 96():183-196. PubMed ID: 30606524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Graphene oxide as sensitive layer in Love-wave surface acoustic wave sensors for the detection of chemical warfare agent simulants.
    Sayago I; Matatagui D; Fernández MJ; Fontecha JL; Jurewicz I; Garriga R; Muñoz E
    Talanta; 2016 Feb; 148():393-400. PubMed ID: 26653465
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and response of new microsensor coatings-II Acridinium betaines and anionic surfactants.
    Katritzky AR; Offerman RJ; Aurrecoechea JM; Savage GP
    Talanta; 1990 Sep; 37(9):911-9. PubMed ID: 18965041
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New poly(N,N-dimethylaminoethyl methacrylate)/polyvinyl alcohol copolymer coated QCM sensor for interaction with CWA simulants.
    Zhang Z; Fan J; Yu J; Zheng S; Chen W; Li H; Wang Z; Zhang W
    ACS Appl Mater Interfaces; 2012 Feb; 4(2):944-9. PubMed ID: 22257173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of magnetron sputtered WO₃ nanoparticles-degradation of 2-chloroethyl ethyl sulfide and dimethyl methyl phosphonate.
    Verma M; Chandra R; Gupta VK
    J Colloid Interface Sci; 2015 Sep; 453():60-68. PubMed ID: 25965433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of Dimethyl Methylphosphonate Adsorption and Decomposition on Zirconium Hydroxide Using Variable Temperature In Situ Attenuated Total Reflection Infrared Spectroscopy.
    Jeon S; Schweigert IV; Pehrsson PE; Balow RB
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):14662-14671. PubMed ID: 32105054
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.