BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 25148480)

  • 1. Trimethylamine and trimethylamine N-oxide are supplementary energy sources for a marine heterotrophic bacterium: implications for marine carbon and nitrogen cycling.
    Lidbury ID; Murrell JC; Chen Y
    ISME J; 2015 Mar; 9(3):760-9. PubMed ID: 25148480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic Insight into Trimethylamine N-Oxide Recognition by the Marine Bacterium Ruegeria pomeroyi DSS-3.
    Li CY; Chen XL; Shao X; Wei TD; Wang P; Xie BB; Qin QL; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Zhang YZ
    J Bacteriol; 2015 Nov; 197(21):3378-87. PubMed ID: 26283766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Trimethylamine N-oxide metabolism by abundant marine heterotrophic bacteria.
    Lidbury I; Murrell JC; Chen Y
    Proc Natl Acad Sci U S A; 2014 Feb; 111(7):2710-5. PubMed ID: 24550299
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural mechanism for bacterial oxidation of oceanic trimethylamine into trimethylamine N-oxide.
    Li CY; Chen XL; Zhang D; Wang P; Sheng Q; Peng M; Xie BB; Qin QL; Li PY; Zhang XY; Su HN; Song XY; Shi M; Zhou BC; Xun LY; Chen Y; Zhang YZ
    Mol Microbiol; 2017 Mar; 103(6):992-1003. PubMed ID: 27997715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Purine catabolic pathway revealed by transcriptomics in the model marine bacterium Ruegeria pomeroyi DSS-3.
    Cunliffe M
    FEMS Microbiol Ecol; 2016 Jan; 92(1):. PubMed ID: 26613749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interkingdom Cross-Feeding of Ammonium from Marine Methylamine-Degrading Bacteria to the Diatom Phaeodactylum tricornutum.
    Suleiman M; Zecher K; Yücel O; Jagmann N; Philipp B
    Appl Environ Microbiol; 2016 Dec; 82(24):7113-7122. PubMed ID: 27694241
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparative genomics of methylated amine utilization by marine Roseobacter clade bacteria and development of functional gene markers (tmm, gmaS).
    Chen Y
    Environ Microbiol; 2012 Sep; 14(9):2308-22. PubMed ID: 22540311
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dimethylsulfide is an energy source for the heterotrophic marine bacterium Sagittula stellata.
    Boden R; Murrell JC; Schäfer H
    FEMS Microbiol Lett; 2011 Sep; 322(2):188-93. PubMed ID: 21718347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the Trimethylamine
    Gao C; Zhang N; He XY; Wang N; Zhang XY; Wang P; Chen XL; Zhang YZ; Ding JM; Li CY
    Front Microbiol; 2022; 13():838608. PubMed ID: 35295296
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recognition cascade and metabolite transfer in a marine bacteria-phytoplankton model system.
    Durham BP; Dearth SP; Sharma S; Amin SA; Smith CB; Campagna SR; Armbrust EV; Moran MA
    Environ Microbiol; 2017 Sep; 19(9):3500-3513. PubMed ID: 28631440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A mechanism for bacterial transformation of dimethylsulfide to dimethylsulfoxide: a missing link in the marine organic sulfur cycle.
    Lidbury I; Kröber E; Zhang Z; Zhu Y; Murrell JC; Chen Y; Schäfer H
    Environ Microbiol; 2016 Sep; 18(8):2754-66. PubMed ID: 27114231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evidence of Interdomain Ammonium Cross-Feeding From Methylamine- and Glycine Betaine-Degrading
    Zecher K; Hayes KR; Philipp B
    Front Microbiol; 2020; 11():533894. PubMed ID: 33123096
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nutrient-Colimited Trichodesmium as a Nitrogen Source or Sink in a Future Ocean.
    Walworth NG; Fu FX; Lee MD; Cai X; Saito MA; Webb EA; Hutchins DA
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29180365
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial metabolism of methanol and methylamine in the Gulf of Mexico: insight into marine carbon and nitrogen cycling.
    Zhuang GC; Peña-Montenegro TD; Montgomery A; Hunter KS; Joye SB
    Environ Microbiol; 2018 Dec; 20(12):4543-4554. PubMed ID: 30209867
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Amino Acid and Sugar Catabolism in the Marine Bacterium Phaeobacter inhibens DSM 17395 from an Energetic Viewpoint.
    Wünsch D; Trautwein K; Scheve S; Hinrichs C; Feenders C; Blasius B; Schomburg D; Rabus R
    Appl Environ Microbiol; 2019 Dec; 85(24):. PubMed ID: 31604772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alphaproteobacteria facilitate Trichodesmium community trimethylamine utilization.
    Conover AE; Morando M; Zhao Y; Semones J; Hutchins DA; Webb EA
    Environ Microbiol; 2021 Nov; 23(11):6798-6810. PubMed ID: 34519133
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elucidation of glutamine lipid biosynthesis in marine bacteria reveals its importance under phosphorus deplete growth in Rhodobacteraceae.
    Smith AF; Rihtman B; Stirrup R; Silvano E; Mausz MA; Scanlan DJ; Chen Y
    ISME J; 2019 Jan; 13(1):39-49. PubMed ID: 30108306
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metabolism of trimethylamines in kelp bass (Paralabrax clathratus) and marine and freshwater pink salmon (Oncorhynchus gorbuscha).
    Charest RP; Chenoweth M; Dunn A
    J Comp Physiol B; 1988; 158(5):609-19. PubMed ID: 3249023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metagenomic data-mining reveals contrasting microbial populations responsible for trimethylamine formation in human gut and marine ecosystems.
    Jameson E; Doxey AC; Airs R; Purdy KJ; Murrell JC; Chen Y
    Microb Genom; 2016 Sep; 2(9):e000080. PubMed ID: 28785417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppression of intestinal microbiota-dependent production of pro-atherogenic trimethylamine N-oxide by shifting L-carnitine microbial degradation.
    Kuka J; Liepinsh E; Makrecka-Kuka M; Liepins J; Cirule H; Gustina D; Loza E; Zharkova-Malkova O; Grinberga S; Pugovics O; Dambrova M
    Life Sci; 2014 Nov; 117(2):84-92. PubMed ID: 25301199
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.