These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

236 related articles for article (PubMed ID: 25148657)

  • 1. Control of an electromechanical hydrocephalus shunt--a new approach.
    Elixmann IM; Kwiecien M; Goffin C; Walter M; Misgeld B; Kiefer M; Steudel WI; Radermacher K; Leonhardt S
    IEEE Trans Biomed Eng; 2014 Sep; 61(9):2379-88. PubMed ID: 25148657
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simulation of existing and future electromechanical shunt valves in combination with a model for brain fluid dynamics.
    Elixmann IM; Walter M; Kiefer M; Leonhardt S
    Acta Neurochir Suppl; 2012; 113():77-81. PubMed ID: 22116428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single pulse analysis of intracranial pressure for a hydrocephalus implant.
    Elixmann IM; Hansinger J; Goffin C; Antes S; Radermacher K; Leonhardt S
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():3939-42. PubMed ID: 23366789
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A physical framework for implementing virtual models of intracranial pressure and cerebrospinal fluid dynamics in hydrocephalus shunt testing.
    Venkataraman P; Browd SR; Lutz BR
    J Neurosurg Pediatr; 2016 Sep; 18(3):296-305. PubMed ID: 27203135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Computer-assisted test ring for cerebrospinal fluid drainage systems].
    Leonhardt S; Bluhm V; Steudel WI
    Biomed Tech (Berl); 1994; 39(7-8):188-95. PubMed ID: 7948662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intracranial Pressure Sensor and Valve to Control Hydrocephalus.
    Webster JG; Iskandar B; Medow J; Luzzio C; Zhang X; Guan C; Yang Z
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():1-7. PubMed ID: 30440275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intelligent shunt agent for gradual shunt removal.
    Al-Zubi N; Al-Kharabsheh A; Momani L; Al-Nuaimy W
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():430-3. PubMed ID: 21096764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Noninvasive measurement of cerebrospinal fluid flow using an ultrasonic transit time flow sensor: a preliminary study.
    Pennell T; Yi JL; Kaufman BA; Krishnamurthy S
    J Neurosurg Pediatr; 2016 Mar; 17(3):270-7. PubMed ID: 26565943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Shunt assistant valve: bench test investigations and clinical performance.
    Tokoro K; Suzuki S; Chiba Y; Tsuda M
    Childs Nerv Syst; 2002 Oct; 18(9-10):492-9. PubMed ID: 12382174
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Treatment of refractory low-pressure hydrocephalus with an active pumping negative-pressure shunt system.
    Kalani MY; Turner JD; Nakaji P
    J Clin Neurosci; 2013 Mar; 20(3):462-6. PubMed ID: 23380444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of the intracranial pressure waveform during infusion studies by means of central tendency measure.
    Santamarta D; Abásolo D; Martínez-Madrigal M; Hornero R
    Acta Neurochir (Wien); 2012 Sep; 154(9):1595-602. PubMed ID: 22805895
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Posture-independent piston valve: a novel valve mechanism that actuates based on intracranial pressure alone.
    Medow JE; Luzzio CC
    J Neurosurg Pediatr; 2012 Jan; 9(1):64-8. PubMed ID: 22208323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intracranial pressure measurement/cranial vault mechanics: clinical and experimental observations.
    Razumovsky AY; Hanley DF
    Curr Opin Neurol Neurosurg; 1992 Dec; 5(6):818-25. PubMed ID: 1467573
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relative Position of the Third Characteristic Peak of the Intracranial Pressure Pulse Waveform Morphology Differentiates Normal-Pressure Hydrocephalus Shunt Responders and Nonresponders.
    Hamilton R; Fuller J; Baldwin K; Vespa P; Hu X; Bergsneider M
    Acta Neurochir Suppl; 2016; 122():339-45. PubMed ID: 27165933
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Magnetic resonance-based estimation of intracranial pressure correlates with ventriculoperitoneal shunt valve opening pressure setting in children with hydrocephalus.
    Muehlmann M; Koerte IK; Laubender RP; Steffinger D; Lehner M; Peraud A; Heinen F; Kiefer M; Reiser M; Ertl-Wagner B
    Invest Radiol; 2013 Jul; 48(7):543-7. PubMed ID: 23695081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A MEMS-based passive hydrocephalus shunt for body position controlled intracranial pressure regulation.
    Johansson SB; Eklund A; Malm J; Stemme G; Roxhed N
    Biomed Microdevices; 2014 Aug; 16(4):529-36. PubMed ID: 24609991
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrospinal fluid hydrodynamics after placement of a shunt with an antisiphon device: a long-term study.
    Lundkvist B; Eklund A; Kristensen B; Fagerlund M; Koskinen LO; Malm J
    J Neurosurg; 2001 May; 94(5):750-6. PubMed ID: 11354406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CSF outflow resistance as predictor of shunt function. A long-term study.
    Malm J; Lundkvist B; Eklund A; Koskinen LO; Kristensen B
    Acta Neurol Scand; 2004 Sep; 110(3):154-60. PubMed ID: 15285771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracranial pressure, its components and cerebrospinal fluid pressure-volume compensation.
    Kasprowicz M; Lalou DA; Czosnyka M; Garnett M; Czosnyka Z
    Acta Neurol Scand; 2016 Sep; 134(3):168-80. PubMed ID: 26666840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in intracranial pulse pressure amplitudes after shunt implantation and adjustment of shunt valve opening pressure in normal pressure hydrocephalus.
    Eide PK; Sorteberg W
    Acta Neurochir (Wien); 2008 Nov; 150(11):1141-7; discussion 1147. PubMed ID: 18936877
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.