These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
229 related articles for article (PubMed ID: 25148833)
1. Predictions of heading date in bread wheat (Triticum aestivum L.) using QTL-based parameters of an ecophysiological model. Bogard M; Ravel C; Paux E; Bordes J; Balfourier F; Chapman SC; Le Gouis J; Allard V J Exp Bot; 2014 Nov; 65(20):5849-65. PubMed ID: 25148833 [TBL] [Abstract][Full Text] [Related]
2. Genome-wide association study of heading and flowering dates and construction of its prediction equation in Chinese common wheat. Zhang X; Chen J; Yan Y; Yan X; Shi C; Zhao L; Chen F Theor Appl Genet; 2018 Nov; 131(11):2271-2285. PubMed ID: 30218294 [TBL] [Abstract][Full Text] [Related]
3. Heading Date QTL in Winter Wheat (Triticum aestivum L.) Coincide with Major Developmental Genes VERNALIZATION1 and PHOTOPERIOD1. Guedira M; Xiong M; Hao YF; Johnson J; Harrison S; Marshall D; Brown-Guedira G PLoS One; 2016; 11(5):e0154242. PubMed ID: 27163605 [TBL] [Abstract][Full Text] [Related]
4. Identification of the vernalization gene VRN-B1 responsible for heading date variation by QTL mapping using a RIL population in wheat. Li Y; Xiong H; Guo H; Zhou C; Xie Y; Zhao L; Gu J; Zhao S; Ding Y; Liu L BMC Plant Biol; 2020 Jul; 20(1):331. PubMed ID: 32660420 [TBL] [Abstract][Full Text] [Related]
5. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. Zheng B; Biddulph B; Li D; Kuchel H; Chapman S J Exp Bot; 2013 Sep; 64(12):3747-61. PubMed ID: 23873997 [TBL] [Abstract][Full Text] [Related]
6. Detection of quantitative trait loci for heading date based on the doubled haploid progeny of two elite Chinese wheat cultivars. Zhang K; Tian J; Zhao L; Liu B; Chen G Genetica; 2009 Apr; 135(3):257-65. PubMed ID: 18500653 [TBL] [Abstract][Full Text] [Related]
7. Allelic variation of vernalization and photoperiod response genes in a diverse set of North American high latitude winter wheat genotypes. Whittal A; Kaviani M; Graf R; Humphreys G; Navabi A PLoS One; 2018; 13(8):e0203068. PubMed ID: 30161188 [TBL] [Abstract][Full Text] [Related]
8. Deciphering the genetics of flowering time by an association study on candidate genes in bread wheat (Triticum aestivum L.). Rousset M; Bonnin I; Remoué C; Falque M; Rhoné B; Veyrieras JB; Madur D; Murigneux A; Balfourier F; Le Gouis J; Santoni S; Goldringer I Theor Appl Genet; 2011 Oct; 123(6):907-26. PubMed ID: 21761163 [TBL] [Abstract][Full Text] [Related]
9. Allelic Variation in Developmental Genes and Effects on Winter Wheat Heading Date in the U.S. Great Plains. Grogan SM; Brown-Guedira G; Haley SD; McMaster GS; Reid SD; Smith J; Byrne PF PLoS One; 2016; 11(4):e0152852. PubMed ID: 27058239 [TBL] [Abstract][Full Text] [Related]
10. A genome-wide association study of 23 agronomic traits in Chinese wheat landraces. Liu Y; Lin Y; Gao S; Li Z; Ma J; Deng M; Chen G; Wei Y; Zheng Y Plant J; 2017 Sep; 91(5):861-873. PubMed ID: 28628238 [TBL] [Abstract][Full Text] [Related]
11. Most significant genome regions involved in the control of earliness traits in bread wheat, as revealed by QTL meta-analysis. Hanocq E; Laperche A; Jaminon O; Lainé AL; Le Gouis J Theor Appl Genet; 2007 Feb; 114(3):569-84. PubMed ID: 17171391 [TBL] [Abstract][Full Text] [Related]
12. A multiparental cross population for mapping QTL for agronomic traits in durum wheat (Triticum turgidum ssp. durum). Milner SG; Maccaferri M; Huang BE; Mantovani P; Massi A; Frascaroli E; Tuberosa R; Salvi S Plant Biotechnol J; 2016 Feb; 14(2):735-48. PubMed ID: 26132599 [TBL] [Abstract][Full Text] [Related]
13. QTL analysis and QTL-based prediction of flowering phenology in recombinant inbred lines of barley. Yin X; Struik PC; van Eeuwijk FA; Stam P; Tang J J Exp Bot; 2005 Mar; 56(413):967-76. PubMed ID: 15710636 [TBL] [Abstract][Full Text] [Related]
14. A three-component system incorporating Ppd-D1, copy number variation at Ppd-B1, and numerous small-effect quantitative trait loci facilitates adaptation of heading time in winter wheat cultivars of worldwide origin. Würschum T; Langer SM; Longin CFH; Tucker MR; Leiser WL Plant Cell Environ; 2018 Jun; 41(6):1407-1416. PubMed ID: 29480543 [TBL] [Abstract][Full Text] [Related]
15. The quantitative response of wheat vernalization to environmental variables indicates that vernalization is not a response to cold temperature. Allard V; Veisz O; Kõszegi B; Rousset M; Le Gouis J; Martre P J Exp Bot; 2012 Jan; 63(2):847-57. PubMed ID: 21994169 [TBL] [Abstract][Full Text] [Related]
16. Development of a High-Density SNP-Based Linkage Map and Detection of QTL for β-Glucans, Protein Content, Grain Yield per Spike and Heading Time in Durum Wheat. Marcotuli I; Gadaleta A; Mangini G; Signorile AM; Zacheo SA; Blanco A; Simeone R; Colasuonno P Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28635630 [TBL] [Abstract][Full Text] [Related]
18. The identification of new candidate genes Triticum aestivum FLOWERING LOCUS T3-B1 (TaFT3-B1) and TARGET OF EAT1 (TaTOE1-B1) controlling the short-day photoperiod response in bread wheat. Zikhali M; Wingen LU; Leverington-Waite M; Specel S; Griffiths S Plant Cell Environ; 2017 Nov; 40(11):2678-2690. PubMed ID: 28667827 [TBL] [Abstract][Full Text] [Related]
19. Identification of genetic loci associated with major agronomic traits of wheat (Triticum aestivum L.) based on genome-wide association analysis. Jung WJ; Lee YJ; Kang CS; Seo YW BMC Plant Biol; 2021 Sep; 21(1):418. PubMed ID: 34517837 [TBL] [Abstract][Full Text] [Related]
20. Molecular characterization of vernalization and response genes in bread wheat from the Yellow and Huai Valley of China. Chen F; Gao M; Zhang J; Zuo A; Shang X; Cui D BMC Plant Biol; 2013 Dec; 13():199. PubMed ID: 24314021 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]