These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
79 related articles for article (PubMed ID: 25148857)
1. Microemulsification: an approach for analytical determinations. Lima RS; Shiroma LY; Teixeira AV; de Toledo JR; do Couto BC; de Carvalho RM; Carrilho E; Kubota LT; Gobbi AL Anal Chem; 2014 Sep; 86(18):9082-90. PubMed ID: 25148857 [TBL] [Abstract][Full Text] [Related]
2. Characterisation of microemulsions containing orange oil with water and propylene glycol as hydrophilic components. Yotsawimonwat S; Okonoki S; Krauel K; Sirithunyalug J; Sirithunyalug B; Rades T Pharmazie; 2006 Nov; 61(11):920-6. PubMed ID: 17152984 [TBL] [Abstract][Full Text] [Related]
3. Characterization of cephalexin loaded nonionic microemulsions. Fanun M; Papadimitriou V; Xenakis A J Colloid Interface Sci; 2011 Sep; 361(1):115-21. PubMed ID: 21658706 [TBL] [Abstract][Full Text] [Related]
4. [Comparison of conductivity-water content curve and visual methods for ascertaintation of the critical water content of O/W microemulsions formation]. Xiang DW; Tang TT; Peng JF; Li LL; Sun XB; Xiang DX Yao Xue Xue Bao; 2010 Aug; 45(8):1052-6. PubMed ID: 21351595 [TBL] [Abstract][Full Text] [Related]
6. Development of a novel microextraction by packed sorbent-based approach followed by ultrahigh pressure liquid chromatography as a powerful technique for quantification phenolic constituents of biological interest in wines. Gonçalves J; Mendes B; Silva CL; Câmara JS J Chromatogr A; 2012 Mar; 1229():13-23. PubMed ID: 22305355 [TBL] [Abstract][Full Text] [Related]
7. On the incorporation of the non-steroidal anti-inflammatory naproxen into cationic O/W microemulsions. Correa MA; Scarpa MV; Franzini MC; Oliveira AG Colloids Surf B Biointerfaces; 2005 Jun; 43(2):108-14. PubMed ID: 15919187 [TBL] [Abstract][Full Text] [Related]
8. Preparation, characterization, sterility validation, and in vitro cell toxicity studies of microemulsions possessing potential parenteral applications. Nesamony J; Zachar CL; Jung R; Williams FE; Nauli S Drug Dev Ind Pharm; 2013 Feb; 39(2):240-51. PubMed ID: 22480266 [TBL] [Abstract][Full Text] [Related]
9. Physicochemical investigation of mixed surfactant microemulsions: water solubilization, thermodynamic properties, microstructure, and dynamics. Bardhan S; Kundu K; Saha SK; Paul BK J Colloid Interface Sci; 2013 Dec; 411():152-61. PubMed ID: 24064004 [TBL] [Abstract][Full Text] [Related]
10. Investigating the evolution of the phase behavior of AOT-based w/o microemulsions in dodecane as a function of droplet volume fraction. Ganguly R; Choudhury N J Colloid Interface Sci; 2012 Apr; 372(1):45-51. PubMed ID: 22331033 [TBL] [Abstract][Full Text] [Related]
11. Phase behavior of reverse microemulsions based on Peceol(®). Mouri A; Diat O; El Ghzaoui A; Bauer C; Maurel JC; Devoisselle JM; Dorandeu C; Legrand P J Colloid Interface Sci; 2014 Feb; 416():139-46. PubMed ID: 24370413 [TBL] [Abstract][Full Text] [Related]
12. Characterization of phenol and alkyl phenols in organic matrixes with monoethylene glycol extraction and multidimensional gas chromatography/mass spectrometry. Luong J; Gras R; Cortes HJ; Shellie RA Anal Chem; 2013 Jul; 85(13):6219-23. PubMed ID: 23742653 [TBL] [Abstract][Full Text] [Related]
13. Self-microemulsifying and microemulsion systems for transdermal delivery of indomethacin: effect of phase transition. El Maghraby GM Colloids Surf B Biointerfaces; 2010 Feb; 75(2):595-600. PubMed ID: 19892531 [TBL] [Abstract][Full Text] [Related]
14. Oil-in-water lecithin-based microemulsions as a potential delivery system for amphotericin B. Pestana KC; Formariz TP; Franzini CM; Sarmento VH; Chiavacci LA; Scarpa MV; Egito ES; Oliveira AG Colloids Surf B Biointerfaces; 2008 Oct; 66(2):253-9. PubMed ID: 18676122 [TBL] [Abstract][Full Text] [Related]
15. Validation of a gas chromatography/thermal conductivity detection method for the determination of the water content of oxygenated solvents. O'Keefe WK; Ng FT; Rempel GL J Chromatogr A; 2008 Feb; 1182(1):113-8. PubMed ID: 18206894 [TBL] [Abstract][Full Text] [Related]
16. Microemulsions as colloidal vehicle systems for dermal drug delivery. Part IV: Investigation of microemulsion systems based on a eutectic mixture of lidocaine and prilocaine as the colloidal phase by dynamic light scattering. Shukla A; Krause A; Neubert RH J Pharm Pharmacol; 2003 Jun; 55(6):741-8. PubMed ID: 12841933 [TBL] [Abstract][Full Text] [Related]
17. A study of microemulsions as prolonged-release injectables through in-situ phase transition. Wu Z; Alany RG; Tawfeek N; Falconer J; Zhang W; Hassan IM; Rutland M; Svirskis D J Control Release; 2014 Jan; 174():188-94. PubMed ID: 24316265 [TBL] [Abstract][Full Text] [Related]
18. Optimization of a novel method based on solidification of floating organic droplet by high-performance liquid chromatography for evaluation of antifungal drugs in biological samples. Adlnasab L; Ebrahimzadeh H; Yamini Y; Mirzajani F Talanta; 2010 Dec; 83(2):370-8. PubMed ID: 21111148 [TBL] [Abstract][Full Text] [Related]
19. Viscoelastic and shear viscosity studies of colloidal silica particles dispersed in monoethylene glycol (MEG), diethylene glycol (DEG), and dodecane stabilized by dodecyl hexaethylene glycol monoether (C12E6). Thwala JM; Goodwin JW; Mills PD Langmuir; 2008 Nov; 24(22):12858-66. PubMed ID: 18850730 [TBL] [Abstract][Full Text] [Related]
20. Upflow anaerobic sludge blanket reactor--a review. Bal AS; Dhagat NN Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]