These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 25148894)
1. Transgene autoexcision in switchgrass pollen mediated by the Bxb1 recombinase. Somleva MN; Xu CA; Ryan KP; Thilmony R; Peoples O; Snell KD; Thomson J BMC Biotechnol; 2014 Aug; 14():79. PubMed ID: 25148894 [TBL] [Abstract][Full Text] [Related]
2. Pollen-mediated gene flow from transgenic to non-transgenic switchgrass (Panicum virgatum L.) in the field. Millwood R; Nageswara-Rao M; Ye R; Terry-Emert E; Johnson CR; Hanson M; Burris JN; Kwit C; Stewart CN BMC Biotechnol; 2017 May; 17(1):40. PubMed ID: 28464851 [TBL] [Abstract][Full Text] [Related]
3. Gateway-compatible vectors for high-throughput gene functional analysis in switchgrass (Panicum virgatum L.) and other monocot species. Mann DG; Lafayette PR; Abercrombie LL; King ZR; Mazarei M; Halter MC; Poovaiah CR; Baxter H; Shen H; Dixon RA; Parrott WA; Neal Stewart C Plant Biotechnol J; 2012 Feb; 10(2):226-36. PubMed ID: 21955653 [TBL] [Abstract][Full Text] [Related]
4. A profilin gene promoter from switchgrass (Panicum virgatum L.) directs strong and specific transgene expression to vascular bundles in rice. Xu W; Liu W; Ye R; Mazarei M; Huang D; Zhang X; Stewart CN Plant Cell Rep; 2018 Apr; 37(4):587-597. PubMed ID: 29340787 [TBL] [Abstract][Full Text] [Related]
5. Cre-mediated autoexcision of selectable marker genes in soybean, cotton, canola and maize transgenic plants. Ye X; Vaghchhipawala Z; Williams EJ; Fu C; Liu J; Lu F; Hall EL; Guo SX; Frank L; Gilbertson LA Plant Cell Rep; 2023 Jan; 42(1):45-55. PubMed ID: 36316413 [TBL] [Abstract][Full Text] [Related]
6. Protocol for Agrobacterium-Mediated Transformation and Transgenic Plant Production of Switchgrass. Chen Q; Song GQ Methods Mol Biol; 2019; 1864():105-115. PubMed ID: 30415332 [TBL] [Abstract][Full Text] [Related]
8. Directed microspore-specific recombination of transgenic alleles to prevent pollen-mediated transmission of transgenes. Mlynárová L; Conner AJ; Nap JP Plant Biotechnol J; 2006 Jul; 4(4):445-52. PubMed ID: 17177809 [TBL] [Abstract][Full Text] [Related]
9. Expression of a bacterial 3-dehydroshikimate dehydratase (QsuB) reduces lignin and improves biomass saccharification efficiency in switchgrass (Panicum virgatum L.). Hao Z; Yogiswara S; Wei T; Benites VT; Sinha A; Wang G; Baidoo EEK; Ronald PC; Scheller HV; Loqué D; Eudes A BMC Plant Biol; 2021 Jan; 21(1):56. PubMed ID: 33478381 [TBL] [Abstract][Full Text] [Related]
10. Biolistic transformation of elite genotypes of switchgrass (Panicum virgatum L.). King ZR; Bray AL; Lafayette PR; Parrott WA Plant Cell Rep; 2014 Feb; 33(2):313-22. PubMed ID: 24177598 [TBL] [Abstract][Full Text] [Related]
11. Production of polyhydroxybutyrate in switchgrass, a value-added co-product in an important lignocellulosic biomass crop. Somleva MN; Snell KD; Beaulieu JJ; Peoples OP; Garrison BR; Patterson NA Plant Biotechnol J; 2008 Sep; 6(7):663-78. PubMed ID: 18498309 [TBL] [Abstract][Full Text] [Related]
12. Expression of ZmGA20ox cDNA alters plant morphology and increases biomass production of switchgrass (Panicum virgatum L.). Do PT; De Tar JR; Lee H; Folta MK; Zhang ZJ Plant Biotechnol J; 2016 Jul; 14(7):1532-40. PubMed ID: 26801525 [TBL] [Abstract][Full Text] [Related]
13. Overexpression of miR156 in switchgrass (Panicum virgatum L.) results in various morphological alterations and leads to improved biomass production. Fu C; Sunkar R; Zhou C; Shen H; Zhang JY; Matts J; Wolf J; Mann DG; Stewart CN; Tang Y; Wang ZY Plant Biotechnol J; 2012 May; 10(4):443-52. PubMed ID: 22239253 [TBL] [Abstract][Full Text] [Related]
14. Precise excision of plastid DNA by the large serine recombinase Bxb1. Shao M; Kumar S; Thomson JG Plant Biotechnol J; 2014 Apr; 12(3):322-9. PubMed ID: 24261912 [TBL] [Abstract][Full Text] [Related]
15. Gene flow matters in switchgrass (Panicum virgatum L.), a potential widespread biofuel feedstock. Kwit C; Stewart CN Ecol Appl; 2012 Jan; 22(1):3-7. PubMed ID: 22471071 [TBL] [Abstract][Full Text] [Related]
16. Switchgrass (Panicum virgatum L.) polyubiquitin gene (PvUbi1 and PvUbi2) promoters for use in plant transformation. Mann DG; King ZR; Liu W; Joyce BL; Percifield RJ; Hawkins JS; LaFayette PR; Artelt BJ; Burris JN; Mazarei M; Bennetzen JL; Parrott WA; Stewart CN BMC Biotechnol; 2011 Jul; 11():74. PubMed ID: 21745390 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of OsPIL1 enhanced biomass yield and saccharification efficiency in switchgrass. Yan J; Liu Y; Wang K; Li D; Hu Q; Zhang W Plant Sci; 2018 Nov; 276():143-151. PubMed ID: 30348312 [TBL] [Abstract][Full Text] [Related]
18. A simplified protocol for genetic transformation of switchgrass (Panicum virgatum L.). Ramamoorthy R; Kumar PP Plant Cell Rep; 2012 Oct; 31(10):1923-31. PubMed ID: 22733209 [TBL] [Abstract][Full Text] [Related]
19. Keeping the genie in the bottle: transgene biocontainment by excision in pollen. Moon HS; Li Y; Stewart CN Trends Biotechnol; 2010 Jan; 28(1):3-8. PubMed ID: 19857909 [TBL] [Abstract][Full Text] [Related]
20. Heterologous expression of a chimeric gene, OsDST-SRDX, enhanced salt tolerance of transgenic switchgrass (Panicum virgatum L.). Cen H; Liu Y; Li D; Wang K; Zhang Y; Zhang W Plant Cell Rep; 2020 Jun; 39(6):723-736. PubMed ID: 32130473 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]