BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 25148953)

  • 1. Formulation and characterisation of wheat bran oil-in-water nanoemulsions.
    Rebolleda S; Sanz MT; Benito JM; Beltrán S; Escudero I; González San-José ML
    Food Chem; 2015 Jan; 167():16-23. PubMed ID: 25148953
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of surface-active and antioxidant effect of olive oil endogenous compounds on the stabilization of water-in-olive-oil nanoemulsions.
    Polychniatou V; Tzia C
    Food Chem; 2018 Feb; 240():1146-1153. PubMed ID: 28946236
    [No Abstract]   [Full Text] [Related]  

  • 3. Physicochemical characterization and nano-emulsification of three species of pumpkin seed oils with focus on their physical stability.
    Ordoñez Lozada MI; Rodrigues Maldonade I; Bobrowski Rodrigues D; Silva Santos D; Ortega Sanchez BA; Narcizo de Souza PE; Longo JP; Bernardo Amaro G; de Lacerda de Oliveira L
    Food Chem; 2021 May; 343():128512. PubMed ID: 33223288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-in-Oil-in-Water Nanoemulsions Containing Temulawak (
    Harimurti N; Nasikin M; Mulia K
    Molecules; 2021 Jan; 26(1):. PubMed ID: 33401775
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development and in vitro/in vivo performance of self-nanoemulsifying drug delivery systems loaded with candesartan cilexetil.
    AboulFotouh K; Allam AA; El-Badry M; El-Sayed AM
    Eur J Pharm Sci; 2017 Nov; 109():503-513. PubMed ID: 28889028
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a kojic monooleate-enriched oil-in-water nanoemulsion as a potential carrier for hyperpigmentation treatment.
    Syed Azhar SNA; Ashari SE; Salim N
    Int J Nanomedicine; 2018; 13():6465-6479. PubMed ID: 30410332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments.
    Bernardi DS; Pereira TA; Maciel NR; Bortoloto J; Viera GS; Oliveira GC; Rocha-Filho PA
    J Nanobiotechnology; 2011 Sep; 9():44. PubMed ID: 21952107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization and characterization of the formation of oil-in-water diazinon nanoemulsions: Modeling and influence of the oil phase, surfactant and sonication.
    Badawy MEI; Saad ASA; Tayeb EHM; Mohammed SA; Abd-Elnabi AD
    J Environ Sci Health B; 2017 Dec; 52(12):896-911. PubMed ID: 29111904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased antioxidant efficacy of tocopherols by surfactant solubilization in oil-in-water emulsions.
    Kiralan SS; Doğu-Baykut E; Kittipongpittaya K; McClements DJ; Decker EA
    J Agric Food Chem; 2014 Oct; 62(43):10561-6. PubMed ID: 25299347
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Formation of vitamin D nanoemulsion-based delivery systems by spontaneous emulsification: factors affecting particle size and stability.
    Guttoff M; Saberi AH; McClements DJ
    Food Chem; 2015 Mar; 171():117-22. PubMed ID: 25308650
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and stability evaluation of water-in-edible oils emulsions formulated with the incorporation of hydrophilic Hibiscus sabdariffa extract.
    Pimentel-Moral S; Rodríguez-Pérez C; Segura-Carretero A; Martínez-Férez A
    Food Chem; 2018 Sep; 260():200-207. PubMed ID: 29699663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formulation design and in vitro physicochemical characterization of surface modified self-nanoemulsifying formulations (SNEFs) of gentamicin.
    Umeyor C; Attama A; Uronnachi E; Kenechukwu F; Nwakile C; Nzekwe I; Okoye E; Esimone C
    Int J Pharm; 2016 Jan; 497(1-2):161-98. PubMed ID: 26657350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modelling and optimising of physicochemical features of walnut-oil beverage emulsions by implementation of response surface methodology: effect of preparation conditions on emulsion stability.
    Homayoonfal M; Khodaiyan F; Mousavi M
    Food Chem; 2015 May; 174():649-59. PubMed ID: 25529732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optimization of orange oil nanoemulsion formation by isothermal low-energy methods: influence of the oil phase, surfactant, and temperature.
    Chang Y; McClements DJ
    J Agric Food Chem; 2014 Mar; 62(10):2306-12. PubMed ID: 24564878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. β-lactoglobulin stabilized nanemulsions--Formulation and process factors affecting droplet size and nanoemulsion stability.
    Ali A; Mekhloufi G; Huang N; Agnely F
    Int J Pharm; 2016 Mar; 500(1-2):291-304. PubMed ID: 26784982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanoemulsions prepared by a low-energy emulsification method applied to edible films.
    Bilbao-Sáinz C; Avena-Bustillos RJ; Wood DF; Williams TG; McHugh TH
    J Agric Food Chem; 2010 Nov; 58(22):11932-8. PubMed ID: 20977191
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optimization of preparation conditions for quercetin nanoemulsions using response surface methodology.
    Karadag A; Yang X; Ozcelik B; Huang Q
    J Agric Food Chem; 2013 Mar; 61(9):2130-9. PubMed ID: 23330985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaccessibility study of calcium and vitamin D
    Dima C; Dima S
    Food Chem; 2020 Jan; 303():125416. PubMed ID: 31472385
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of hemp seed oil nanoemulsions loaded with ascorbyl palmitate: Effect of operational parameters, emulsifiers, and wall materials.
    Amiri-Rigi A; Kesavan Pillai S; Naushad Emmambux M
    Food Chem; 2023 Jan; 400():134052. PubMed ID: 36067691
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation of Water-in-Oil Nanoemulsions Loaded with Phenolic-Rich Olive Cake Extract Using Response Surface Methodology Approach.
    Niknam SM; Kashaninejad M; Escudero I; Sanz MT; Beltrán S; Benito JM
    Foods; 2022 Jan; 11(3):. PubMed ID: 35159431
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.