These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
131 related articles for article (PubMed ID: 25149312)
1. Targeting the JAK/STAT pathway in cytotoxic T lymphocytes (CTL) by Next Generation Sequencing (NGS). Gigante M; Diella S; Ranieri E Methods Mol Biol; 2014; 1186():253-68. PubMed ID: 25149312 [TBL] [Abstract][Full Text] [Related]
2. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Lee S; Park HY; Kang SY; Kim SJ; Hwang J; Lee S; Kwak SH; Park KS; Yoo HY; Kim WS; Kim JI; Ko YH Oncotarget; 2015 Jul; 6(19):17764-76. PubMed ID: 25980440 [TBL] [Abstract][Full Text] [Related]
3. Performance evaluation of the next-generation sequencing approach for molecular diagnosis of hereditary hearing loss. Sivakumaran TA; Husami A; Kissell D; Zhang W; Keddache M; Black AP; Tinkle BT; Greinwald JH; Zhang K Otolaryngol Head Neck Surg; 2013 Jun; 148(6):1007-16. PubMed ID: 23525850 [TBL] [Abstract][Full Text] [Related]
4. Possible role of the JAK/STAT pathways in the regulation of T cell-interferon related genes in systemic lupus erythematosus. Kawasaki M; Fujishiro M; Yamaguchi A; Nozawa K; Kaneko H; Takasaki Y; Takamori K; Ogawa H; Sekigawa I Lupus; 2011 Oct; 20(12):1231-9. PubMed ID: 21980035 [TBL] [Abstract][Full Text] [Related]
5. Low-Cost, High-Throughput Sequencing of DNA Assemblies Using a Highly Multiplexed Nextera Process. Shapland EB; Holmes V; Reeves CD; Sorokin E; Durot M; Platt D; Allen C; Dean J; Serber Z; Newman J; Chandran S ACS Synth Biol; 2015 Jul; 4(7):860-6. PubMed ID: 25913499 [TBL] [Abstract][Full Text] [Related]
6. Recurrent Oncogenic JAK and STAT Alterations in Cutaneous CD30-Positive Lymphoproliferative Disorders. Maurus K; Appenzeller S; Roth S; Brändlein S; Kneitz H; Goebeler M; Rosenwald A; Geissinger E; Wobser M J Invest Dermatol; 2020 Oct; 140(10):2023-2031.e1. PubMed ID: 32147503 [TBL] [Abstract][Full Text] [Related]
7. Association of JAK-STAT pathway related genes with lymphoma risk: results of a European case-control study (EpiLymph). Butterbach K; Beckmann L; de Sanjosé S; Benavente Y; Becker N; Foretova L; Maynadie M; Cocco P; Staines A; Boffetta P; Brennan P; Nieters A Br J Haematol; 2011 May; 153(3):318-33. PubMed ID: 21418178 [TBL] [Abstract][Full Text] [Related]
8. Library preparation methods for next-generation sequencing: tone down the bias. van Dijk EL; Jaszczyszyn Y; Thermes C Exp Cell Res; 2014 Mar; 322(1):12-20. PubMed ID: 24440557 [TBL] [Abstract][Full Text] [Related]
9. Frequent Mutations in Natural Killer/T Cell Lymphoma. Zhang Y; Li C; Xue W; Zhang M; Li Z Cell Physiol Biochem; 2018; 49(1):1-16. PubMed ID: 30134235 [TBL] [Abstract][Full Text] [Related]
10. A labor and cost effective next generation sequencing of PKHD1 in autosomal recessive polycystic kidney disease patients. Tavira B; Gómez J; Málaga S; Santos F; Fernández-Aracama J; Alonso B; Iglesias S; Benavides A; Hernando I; Plasencia A; Alvarez V; Coto E Gene; 2015 Apr; 561(1):165-9. PubMed ID: 25701400 [TBL] [Abstract][Full Text] [Related]
11. SuperSAGE: powerful serial analysis of gene expression. Matsumura H; Urasaki N; Yoshida K; Krüger DH; Kahl G; Terauchi R Methods Mol Biol; 2012; 883():1-17. PubMed ID: 22589121 [TBL] [Abstract][Full Text] [Related]
12. Inhibition of JAK/STAT signaling pathway prevents high-glucose-induced increase in endothelin-1 synthesis in human endothelial cells. Manea SA; Manea A; Heltianu C Cell Tissue Res; 2010 Apr; 340(1):71-9. PubMed ID: 20217138 [TBL] [Abstract][Full Text] [Related]
13. Mining for JAK-STAT mutations in cancer. Constantinescu SN; Girardot M; Pecquet C Trends Biochem Sci; 2008 Mar; 33(3):122-31. PubMed ID: 18291658 [TBL] [Abstract][Full Text] [Related]
14. Targeted next-generation sequencing can replace Sanger sequencing in clinical diagnostics. Sikkema-Raddatz B; Johansson LF; de Boer EN; Almomani R; Boven LG; van den Berg MP; van Spaendonck-Zwarts KY; van Tintelen JP; Sijmons RH; Jongbloed JD; Sinke RJ Hum Mutat; 2013 Jul; 34(7):1035-42. PubMed ID: 23568810 [TBL] [Abstract][Full Text] [Related]
15. Clinical application of amplicon-based next-generation sequencing in cancer. Chang F; Li MM Cancer Genet; 2013 Dec; 206(12):413-9. PubMed ID: 24332266 [TBL] [Abstract][Full Text] [Related]
17. Frequency of mutations in individuals with breast cancer referred for BRCA1 and BRCA2 testing using next-generation sequencing with a 25-gene panel. Tung N; Battelli C; Allen B; Kaldate R; Bhatnagar S; Bowles K; Timms K; Garber JE; Herold C; Ellisen L; Krejdovsky J; DeLeonardis K; Sedgwick K; Soltis K; Roa B; Wenstrup RJ; Hartman AR Cancer; 2015 Jan; 121(1):25-33. PubMed ID: 25186627 [TBL] [Abstract][Full Text] [Related]
18. High-Throughput Contiguous Full-Length Next-Generation Sequencing of HLA Class I and II Genes from 96 Donors in a Single MiSeq Run. Ehrenberg PK; Geretz A; Thomas R Methods Mol Biol; 2018; 1802():89-100. PubMed ID: 29858803 [TBL] [Abstract][Full Text] [Related]
19. Emulsion PCR-coupled target enrichment: an effective fishing method for high-throughput sequencing of poorly preserved ancient DNA. Kihana M; Mizuno F; Sawafuji R; Wang L; Ueda S Gene; 2013 Oct; 528(2):347-51. PubMed ID: 23900195 [TBL] [Abstract][Full Text] [Related]
20. Next generation sequencing challenges in the analysis of cardiac sudden death due to arrhythmogenic disorders. Brion M; Blanco-Verea A; Sobrino B; Santori M; Gil R; Ramos-Luis E; Martinez M; Amigo J; Carracedo A Electrophoresis; 2014 Nov; 35(21-22):3111-6. PubMed ID: 24981977 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]