These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
220 related articles for article (PubMed ID: 25149470)
1. A novel protein elicitor (SsCut) from Sclerotinia sclerotiorum induces multiple defense responses in plants. Zhang H; Wu Q; Cao S; Zhao T; Chen L; Zhuang P; Zhou X; Gao Z Plant Mol Biol; 2014 Nov; 86(4-5):495-511. PubMed ID: 25149470 [TBL] [Abstract][Full Text] [Related]
2. [Cloning, expression and activity analysis of cutinase from Lü R; Shi L; Zhang X; Feng Z Sheng Wu Gong Cheng Xue Bao; 2022 Jan; 38(1):386-395. PubMed ID: 35142144 [TBL] [Abstract][Full Text] [Related]
3. NbCZF1, a Novel C2H2-Type Zinc Finger Protein, as a New Regulator of SsCut-Induced Plant Immunity in Nicotiana benthamiana. Zhang H; Zhao T; Zhuang P; Song Z; Du H; Tang Z; Gao Z Plant Cell Physiol; 2016 Dec; 57(12):2472-2484. PubMed ID: 27649734 [TBL] [Abstract][Full Text] [Related]
4. SsSm1, a Cerato-platanin family protein, is involved in the hyphal development and pathogenic process of Sclerotinia sclerotiorum. Pan Y; Wei J; Yao C; Reng H; Gao Z Plant Sci; 2018 May; 270():37-46. PubMed ID: 29576085 [TBL] [Abstract][Full Text] [Related]
5. Enhanced resistance to sclerotinia stem rot in transgenic soybean that overexpresses a wheat oxalate oxidase. Yang X; Yang J; Wang Y; He H; Niu L; Guo D; Xing G; Zhao Q; Zhong X; Sui L; Li Q; Dong Y Transgenic Res; 2019 Feb; 28(1):103-114. PubMed ID: 30478526 [TBL] [Abstract][Full Text] [Related]
6. Purification and characterization of a novel hypersensitive response-inducing elicitor from Magnaporthe oryzae that triggers defense response in rice. Chen M; Zeng H; Qiu D; Guo L; Yang X; Shi H; Zhou T; Zhao J PLoS One; 2012; 7(5):e37654. PubMed ID: 22624059 [TBL] [Abstract][Full Text] [Related]
7. The Cutinase Bdo_10846 Play an Important Role in the Virulence of Dong BZ; Zhu XQ; Fan J; Guo LY Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33673023 [No Abstract] [Full Text] [Related]
8. Members of the germin-like protein family in Brassica napus are candidates for the initiation of an oxidative burst that impedes pathogenesis of Sclerotinia sclerotiorum. Rietz S; Bernsdorff FE; Cai D J Exp Bot; 2012 Sep; 63(15):5507-19. PubMed ID: 22888126 [TBL] [Abstract][Full Text] [Related]
9. A novel elicitor identified from Magnaporthe oryzae triggers defense responses in tobacco and rice. Chen M; Zhang C; Zi Q; Qiu D; Liu W; Zeng H Plant Cell Rep; 2014 Nov; 33(11):1865-79. PubMed ID: 25056480 [TBL] [Abstract][Full Text] [Related]
10. A cerato-platanin protein SsCP1 targets plant PR1 and contributes to virulence of Sclerotinia sclerotiorum. Yang G; Tang L; Gong Y; Xie J; Fu Y; Jiang D; Li G; Collinge DB; Chen W; Cheng J New Phytol; 2018 Jan; 217(2):739-755. PubMed ID: 29076546 [TBL] [Abstract][Full Text] [Related]
11. Rice OsPAD4 functions differently from Arabidopsis AtPAD4 in host-pathogen interactions. Ke Y; Liu H; Li X; Xiao J; Wang S Plant J; 2014 May; 78(4):619-31. PubMed ID: 24617729 [TBL] [Abstract][Full Text] [Related]
12. ZmMKK1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco. Cai G; Wang G; Wang L; Pan J; Liu Y; Li D Plant Sci; 2014 Jan; 214():57-73. PubMed ID: 24268164 [TBL] [Abstract][Full Text] [Related]
13. Comparative transcriptomic analysis uncovers the complex genetic network for resistance to Sclerotinia sclerotiorum in Brassica napus. Wu J; Zhao Q; Yang Q; Liu H; Li Q; Yi X; Cheng Y; Guo L; Fan C; Zhou Y Sci Rep; 2016 Jan; 6():19007. PubMed ID: 26743436 [TBL] [Abstract][Full Text] [Related]
14. TMT-based quantitative proteomics analyses reveal novel defense mechanisms of Brassica napus against the devastating necrotrophic pathogen Sclerotinia sclerotiorum. Cao JY; Xu YP; Cai XZ J Proteomics; 2016 Jun; 143():265-277. PubMed ID: 26947552 [TBL] [Abstract][Full Text] [Related]
15. Expression of a wheat MYB gene in transgenic tobacco enhances resistance to Ralstonia solanacearum, and to drought and salt stresses. Liu H; Zhou X; Dong N; Liu X; Zhang H; Zhang Z Funct Integr Genomics; 2011 Sep; 11(3):431-43. PubMed ID: 21597961 [TBL] [Abstract][Full Text] [Related]
16. Expressing a gene encoding wheat oxalate oxidase enhances resistance to Sclerotinia sclerotiorum in oilseed rape (Brassica napus). Dong X; Ji R; Guo X; Foster SJ; Chen H; Dong C; Liu Y; Hu Q; Liu S Planta; 2008 Jul; 228(2):331-40. PubMed ID: 18446363 [TBL] [Abstract][Full Text] [Related]
17. Overexpression of the chitinase gene CmCH1 from Coniothyrium minitans renders enhanced resistance to Sclerotinia sclerotiorum in soybean. Yang X; Yang J; Li H; Niu L; Xing G; Zhang Y; Xu W; Zhao Q; Li Q; Dong Y Transgenic Res; 2020 Apr; 29(2):187-198. PubMed ID: 31970612 [TBL] [Abstract][Full Text] [Related]
18. Expression of L-amino acid oxidase of Trichoderma harzianum in tobacco confers resistance to Sclerotinia sclerotiorum and Botrytis cinerea. Peng KC; Lin CC; Liao CF; Yu HC; Lo CT; Yang HH; Lin KC Plant Sci; 2021 Feb; 303():110772. PubMed ID: 33487356 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of Brassica napus MPK4 enhances resistance to Sclerotinia sclerotiorum in oilseed rape. Wang Z; Mao H; Dong C; Ji R; Cai L; Fu H; Liu S Mol Plant Microbe Interact; 2009 Mar; 22(3):235-44. PubMed ID: 19245318 [TBL] [Abstract][Full Text] [Related]
20. A global study of transcriptome dynamics in canola (Brassica napus L.) responsive to Sclerotinia sclerotiorum infection using RNA-Seq. Joshi RK; Megha S; Rahman MH; Basu U; Kav NN Gene; 2016 Sep; 590(1):57-67. PubMed ID: 27265030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]