These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25149518)

  • 1. Use of nonionic surfactants for improvement of terpene production in Saccharomyces cerevisiae.
    Kirby J; Nishimoto M; Chow RW; Pasumarthi VN; Chan R; Chan LJ; Petzold CJ; Keasling JD
    Appl Environ Microbiol; 2014 Nov; 80(21):6685-93. PubMed ID: 25149518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Enhancing the glycerol utilization of engineered yeast increases its bisabolene production].
    Zang Y; Li Z; Lu Y; Hang J; Yuan W; Sun J
    Sheng Wu Gong Cheng Xue Bao; 2024 Mar; 40(3):847-857. PubMed ID: 38545982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and microbial production of a terpene-based advanced biofuel.
    Peralta-Yahya PP; Ouellet M; Chan R; Mukhopadhyay A; Keasling JD; Lee TS
    Nat Commun; 2011 Sep; 2():483. PubMed ID: 21952217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Building terpene production platforms in yeast.
    Zhuang X; Chappell J
    Biotechnol Bioeng; 2015 Sep; 112(9):1854-64. PubMed ID: 25788404
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailored carbon partitioning for phototrophic production of (E)-α-bisabolene from the green microalga Chlamydomonas reinhardtii.
    Wichmann J; Baier T; Wentnagel E; Lauersen KJ; Kruse O
    Metab Eng; 2018 Jan; 45():211-222. PubMed ID: 29258965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production of farnesene and santalene by Saccharomyces cerevisiae using fed-batch cultivations with RQ-controlled feed.
    Tippmann S; Scalcinati G; Siewers V; Nielsen J
    Biotechnol Bioeng; 2016 Jan; 113(1):72-81. PubMed ID: 26108688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tailoring the Saccharomyces cerevisiae endoplasmic reticulum for functional assembly of terpene synthesis pathway.
    Kim JE; Jang IS; Son SH; Ko YJ; Cho BK; Kim SC; Lee JY
    Metab Eng; 2019 Dec; 56():50-59. PubMed ID: 31445083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-Yielding Terpene-Based Biofuel Production in
    Zhang Y; Song X; Lai Y; Mo Q; Yuan J
    ACS Synth Biol; 2021 Jun; 10(6):1545-1552. PubMed ID: 34101430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzyme and Metabolic Engineering Strategies for Biosynthesis of α-Farnesene in
    Wang S; Zhan C; Nie S; Tian D; Lu J; Wen M; Qiao J; Zhu H; Caiyin Q
    J Agric Food Chem; 2023 Aug; 71(33):12452-12461. PubMed ID: 37574876
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering terpene biosynthesis in Streptomyces for production of the advanced biofuel precursor bisabolene.
    Phelan RM; Sekurova ON; Keasling JD; Zotchev SB
    ACS Synth Biol; 2015 Apr; 4(4):393-9. PubMed ID: 25006988
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advanced biofuel production by the yeast Saccharomyces cerevisiae.
    Buijs NA; Siewers V; Nielsen J
    Curr Opin Chem Biol; 2013 Jun; 17(3):480-8. PubMed ID: 23628723
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Primary and Secondary Metabolic Effects of a Key Gene Deletion (Δ
    Chen Y; Wang Y; Liu M; Qu J; Yao M; Li B; Ding M; Liu H; Xiao W; Yuan Y
    Appl Environ Microbiol; 2019 Apr; 85(7):. PubMed ID: 30683746
    [No Abstract]   [Full Text] [Related]  

  • 13. Metabolic engineering strategies for sesquiterpene production in microorganism.
    Liu CL; Xue K; Yang Y; Liu X; Li Y; Lee TS; Bai Z; Tan T
    Crit Rev Biotechnol; 2022 Feb; 42(1):73-92. PubMed ID: 34256675
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P; Shahpiri A; Asadollahi MA; Momenbeik F; Partow S
    Biotechnol Lett; 2016 Mar; 38(3):503-8. PubMed ID: 26614300
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving heterologous protein expression in
    Sebesta J; Peebles CA
    Metab Eng Commun; 2020 Jun; 10():e00117. PubMed ID: 31908923
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase.
    Ignea C; Pontini M; Maffei ME; Makris AM; Kampranis SC
    ACS Synth Biol; 2014 May; 3(5):298-306. PubMed ID: 24847684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Efficient diterpene production in yeast by engineering Erg20p into a geranylgeranyl diphosphate synthase.
    Ignea C; Trikka FA; Nikolaidis AK; Georgantea P; Ioannou E; Loupassaki S; Kefalas P; Kanellis AK; Roussis V; Makris AM; Kampranis SC
    Metab Eng; 2015 Jan; 27():65-75. PubMed ID: 25446975
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolutionary Engineering Improves Tolerance for Replacement Jet Fuels in Saccharomyces cerevisiae.
    Brennan TC; Williams TC; Schulz BL; Palfreyman RW; Krömer JO; Nielsen LK
    Appl Environ Microbiol; 2015 May; 81(10):3316-25. PubMed ID: 25746998
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids.
    Ignea C; Cvetkovic I; Loupassaki S; Kefalas P; Johnson CB; Kampranis SC; Makris AM
    Microb Cell Fact; 2011 Jan; 10():4. PubMed ID: 21276210
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Progress in terpene synthesis strategies through engineering of Saccharomyces cerevisiae.
    Paramasivan K; Mutturi S
    Crit Rev Biotechnol; 2017 Dec; 37(8):974-989. PubMed ID: 28427280
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.