These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 25149826)

  • 1. Proteomic analysis of the adaptation to warming in the Antarctic bacteria Shewanella frigidimarina.
    García-Descalzo L; García-López E; Alcázar A; Baquero F; Cid C
    Biochim Biophys Acta; 2014 Dec; 1844(12):2229-40. PubMed ID: 25149826
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative proteomic analysis of cabernet sauvignon grape cells exposed to thermal stresses reveals alterations in sugar and phenylpropanoid metabolism.
    George IS; Pascovici D; Mirzaei M; Haynes PA
    Proteomics; 2015 Sep; 15(17):3048-60. PubMed ID: 25959233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparative Proteomic Analysis of Psychrophilic vs. Mesophilic Bacterial Species Reveals Different Strategies to Achieve Temperature Adaptation.
    García-Descalzo L; García-López E; Cid C
    Front Microbiol; 2022; 13():841359. PubMed ID: 35591995
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proteomic studies of an Antarctic cold-adapted bacterium, Shewanella livingstonensis Ac10, for global identification of cold-inducible proteins.
    Kawamoto J; Kurihara T; Kitagawa M; Kato I; Esaki N
    Extremophiles; 2007 Nov; 11(6):819-26. PubMed ID: 17618403
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Shewanella gelidimarina sp. nov. and Shewanella frigidimarina sp. nov., novel Antarctic species with the ability to produce eicosapentaenoic acid (20:5 omega 3) and grow anaerobically by dissimilatory Fe(III) reduction.
    Bowman JP; McCammon SA; Nichols DS; Skerratt JH; Rea SM; Nichols PD; McMeekin TA
    Int J Syst Bacteriol; 1997 Oct; 47(4):1040-7. PubMed ID: 9336903
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Defining the response of a microorganism to temperatures that span its complete growth temperature range (-2°C to 28°C) using multiplex quantitative proteomics.
    Williams TJ; Lauro FM; Ertan H; Burg DW; Poljak A; Raftery MJ; Cavicchioli R
    Environ Microbiol; 2011 Aug; 13(8):2186-203. PubMed ID: 21443741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold adaptation of the mononuclear molybdoenzyme periplasmic nitrate reductase from the Antarctic bacterium Shewanella gelidimarina.
    Simpson PJ; Codd R
    Biochem Biophys Res Commun; 2011 Nov; 414(4):783-8. PubMed ID: 22005463
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and Identification of a Red Pigment from the Antarctic Bacterium Shewanella frigidimarina.
    Martín-Cerezo ML; García-López E; Cid C
    Protein Pept Lett; 2015; 22(12):1076-82. PubMed ID: 26369950
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strategy for cold adaptation of the tryptophan synthase α subunit from the psychrophile Shewanella frigidimarina K14-2: crystal structure and physicochemical properties.
    Mitsuya D; Tanaka S; Matsumura H; Urano N; Takano K; Ogasahara K; Takehira M; Yutani K; Ishida M
    J Biochem; 2014 Feb; 155(2):73-82. PubMed ID: 24163283
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Shewanella vesiculosa sp. nov., a psychrotolerant bacterium isolated from an Antarctic coastal area.
    Bozal N; Montes MJ; Miñana-Galbis D; Manresa A; Mercadé E
    Int J Syst Evol Microbiol; 2009 Feb; 59(Pt 2):336-40. PubMed ID: 19196774
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold-active DnaK of an Antarctic psychrotroph Shewanella sp. Ac10 supporting the growth of dnaK-null mutant of Escherichia coli at cold temperatures.
    Yoshimune K; Galkin A; Kulakova L; Yoshimura T; Esaki N
    Extremophiles; 2005 Apr; 9(2):145-50. PubMed ID: 15599780
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Stress response or beneficial temperature acclimation: transcriptomic signatures in Antarctic fish (Pachycara brachycephalum).
    Windisch HS; Frickenhaus S; John U; Knust R; Pörtner HO; Lucassen M
    Mol Ecol; 2014 Jul; 23(14):3469-82. PubMed ID: 24897925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The proteomic response of the mussel congeners Mytilus galloprovincialis and M. trossulus to acute heat stress: implications for thermal tolerance limits and metabolic costs of thermal stress.
    Tomanek L; Zuzow MJ
    J Exp Biol; 2010 Oct; 213(Pt 20):3559-74. PubMed ID: 20889836
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Photosynthetic and respiratory acclimation and growth response of Antarctic vascular plants to contrasting temperature regimes.
    Xiong FS; Mueller EC; Day TA
    Am J Bot; 2000 May; 87(5):700-10. PubMed ID: 10811794
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cold-stable eye lens crystallins of the Antarctic nototheniid toothfish Dissostichus mawsoni Norman.
    Kiss AJ; Mirarefi AY; Ramakrishnan S; Zukoski CF; Devries AL; Cheng CH
    J Exp Biol; 2004 Dec; 207(Pt 26):4633-49. PubMed ID: 15579559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RNA-seq analyses of cellular responses to elevated body temperature in the high Antarctic cryopelagic nototheniid fish Pagothenia borchgrevinki.
    Bilyk KT; Cheng CH
    Mar Genomics; 2014 Dec; 18 Pt B():163-71. PubMed ID: 24999838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The marine bacteria Shewanella frigidimarina NCIMB400 upregulates the type VI secretion system during early biofilm formation.
    Linares D; Jean N; Van Overtvelt P; Ouidir T; Hardouin J; Blache Y; Molmeret M
    Environ Microbiol Rep; 2016 Feb; 8(1):110-21. PubMed ID: 26617163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Construction of a low-temperature protein expression system using a cold-adapted bacterium, Shewanella sp. strain Ac10, as the host.
    Miyake R; Kawamoto J; Wei YL; Kitagawa M; Kato I; Kurihara T; Esaki N
    Appl Environ Microbiol; 2007 Aug; 73(15):4849-56. PubMed ID: 17526788
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Temperature range for growth of the Antarctic microorganisms].
    Romanovaskaia VA; Tashirev AB; Gladka GB; Tashireva AA
    Mikrobiol Z; 2012; 74(4):13-9. PubMed ID: 23088095
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shewanella frigidimarina microbial fuel cells and the influence of divalent cations on current output.
    Fitzgerald LA; Petersen ER; Leary DH; Nadeau LJ; Soto CM; Ray RI; Little BJ; Ringeisen BR; Johnson GR; Vora GJ; Biffinger JC
    Biosens Bioelectron; 2013 Feb; 40(1):102-9. PubMed ID: 22796023
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.