These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
237 related articles for article (PubMed ID: 25149849)
21. Cerebral Microbleeds Remain for Nine Years: A Prospective Study with Yearly Magnetic Resonance Imaging. Saito T; Kawamura Y; Sato N; Sugiyama E; Okada M; Takeuchi T; Akasaka K; Hasebe N J Stroke Cerebrovasc Dis; 2018 Feb; 27(2):315-320. PubMed ID: 28969880 [TBL] [Abstract][Full Text] [Related]
22. Cerebral microbleed detection using Susceptibility Weighted Imaging and deep learning. Liu S; Utriainen D; Chai C; Chen Y; Wang L; Sethi SK; Xia S; Haacke EM Neuroimage; 2019 Sep; 198():271-282. PubMed ID: 31121296 [TBL] [Abstract][Full Text] [Related]
23. SEMAC-VAT and MSVAT-SPACE sequence strategies for metal artifact reduction in 1.5T magnetic resonance imaging. Ai T; Padua A; Goerner F; Nittka M; Gugala Z; Jadhav S; Trelles M; Johnson RF; Lindsey RW; Li X; Runge VM Invest Radiol; 2012 May; 47(5):267-76. PubMed ID: 22266987 [TBL] [Abstract][Full Text] [Related]
24. Cerebral microbleeds: burden assessment by using quantitative susceptibility mapping. Liu T; Surapaneni K; Lou M; Cheng L; Spincemaille P; Wang Y Radiology; 2012 Jan; 262(1):269-78. PubMed ID: 22056688 [TBL] [Abstract][Full Text] [Related]
25. Automated detection of cerebral microbleeds in MR images: A two-stage deep learning approach. Al-Masni MA; Kim WR; Kim EY; Noh Y; Kim DH Neuroimage Clin; 2020; 28():102464. PubMed ID: 33395960 [TBL] [Abstract][Full Text] [Related]
26. Differentiation between diamagnetic and paramagnetic cerebral lesions based on magnetic susceptibility mapping. Schweser F; Deistung A; Lehr BW; Reichenbach JR Med Phys; 2010 Oct; 37(10):5165-78. PubMed ID: 21089750 [TBL] [Abstract][Full Text] [Related]
27. Automated detection of cerebral microbleeds in patients with Traumatic Brain Injury. van den Heuvel TL; van der Eerden AW; Manniesing R; Ghafoorian M; Tan T; Andriessen TM; Vande Vyvere T; van den Hauwe L; Ter Haar Romeny BM; Goraj BM; Platel B Neuroimage Clin; 2016; 12():241-51. PubMed ID: 27489772 [TBL] [Abstract][Full Text] [Related]
28. Comparison of quantitative susceptibility mapping methods on evaluating radiation-induced cerebral microbleeds and basal ganglia at 3T and 7T. Chen Y; Genc O; Poynton CB; Banerjee S; Hess CP; Lupo JM NMR Biomed; 2022 May; 35(5):e4666. PubMed ID: 35075701 [TBL] [Abstract][Full Text] [Related]
29. Cerebral microbleeds. Utility of SWI sequences. Martínez Camblor L; Peña Suárez JM; Martínez-Cachero García M; Santamarta Liébana E; Rodríguez Castro J; Saiz Ayala A Radiologia (Engl Ed); 2023; 65(4):362-375. PubMed ID: 37516489 [TBL] [Abstract][Full Text] [Related]
31. Efficient detection of cerebral microbleeds on 7.0 T MR images using the radial symmetry transform. Kuijf HJ; de Bresser J; Geerlings MI; Conijn MM; Viergever MA; Biessels GJ; Vincken KL Neuroimage; 2012 Feb; 59(3):2266-73. PubMed ID: 21985903 [TBL] [Abstract][Full Text] [Related]
32. DEEPMIR: a deep neural network for differential detection of cerebral microbleeds and iron deposits in MRI. Rashid T; Abdulkadir A; Nasrallah IM; Ware JB; Liu H; Spincemaille P; Romero JR; Bryan RN; Heckbert SR; Habes M Sci Rep; 2021 Jul; 11(1):14124. PubMed ID: 34238951 [TBL] [Abstract][Full Text] [Related]
33. Susceptibility-weighted MRI of endometrioma: preliminary results. Takeuchi M; Matsuzaki K; Nishitani H AJR Am J Roentgenol; 2008 Nov; 191(5):1366-70. PubMed ID: 18941070 [TBL] [Abstract][Full Text] [Related]
34. Spatial relationship between cerebral microbleeds, moyamoya vessels, and hematoma in moyamoya disease. Kazumata K; Shinbo D; Ito M; Shichinohe H; Kuroda S; Nakayama N; Houkin K J Stroke Cerebrovasc Dis; 2014 Jul; 23(6):1421-8. PubMed ID: 24529354 [TBL] [Abstract][Full Text] [Related]
35. Relationship between the phase value of ESWAN and fractional anisotropy of diffusion tensor imaging in patients with cerebral microbleeds: preliminary results. Guo LF; Geng J; Zhu X; Liu K; Liu C; Cui L Eur Neurol; 2013; 70(3-4):210-7. PubMed ID: 23969637 [TBL] [Abstract][Full Text] [Related]
36. A new susceptibility-weighted image reconstruction method for the reduction of background phase artifacts. Lee Y; Han Y; Park H Magn Reson Med; 2014 Mar; 71(3):1324-35. PubMed ID: 23674230 [TBL] [Abstract][Full Text] [Related]
37. Improved elimination of phase effects from background field inhomogeneities for susceptibility weighted imaging at high magnetic field strengths. Rauscher A; Barth M; Herrmann KH; Witoszynskyj S; Deistung A; Reichenbach JR Magn Reson Imaging; 2008 Oct; 26(8):1145-51. PubMed ID: 18524525 [TBL] [Abstract][Full Text] [Related]
38. Susceptibility weighted imaging with multiple echoes. Denk C; Rauscher A J Magn Reson Imaging; 2010 Jan; 31(1):185-91. PubMed ID: 20027586 [TBL] [Abstract][Full Text] [Related]
39. Susceptibility weighted imaging at ultra high magnetic field strengths: theoretical considerations and experimental results. Deistung A; Rauscher A; Sedlacik J; Stadler J; Witoszynskyj S; Reichenbach JR Magn Reson Med; 2008 Nov; 60(5):1155-68. PubMed ID: 18956467 [TBL] [Abstract][Full Text] [Related]
40. [Cerebral microbleeds detected on T2-weighted gradient echo magnetic resonance and its clinical significance]. Wei TM; Zhou LM; Ji JS; Lin L; Zhang WW Zhonghua Yi Xue Za Zhi; 2013 Oct; 93(37):2979-81. PubMed ID: 24401589 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]