These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 25150686)

  • 1. Zero-valent iron mediated degradation of ciprofloxacin - assessment of adsorption, operational parameters and degradation products.
    Perini JA; Silva BF; Nogueira RF
    Chemosphere; 2014 Dec; 117():345-52. PubMed ID: 25150686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Degradation of ciprofloxacin antibiotic by Homogeneous Fenton oxidation: Hybrid AHP-PROMETHEE method, optimization, biodegradability improvement and identification of oxidized by-products.
    Salari M; Rakhshandehroo GR; Nikoo MR
    Chemosphere; 2018 Sep; 206():157-167. PubMed ID: 29738905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Species-dependent degradation of ciprofloxacin in a membrane anodic Fenton system.
    Xiao X; Zeng X; Lemley AT
    J Agric Food Chem; 2010 Sep; 58(18):10169-75. PubMed ID: 20726585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Study of intermediate by-products and mechanism of the photocatalytic degradation of ciprofloxacin in water using graphitized carbon nitride nanosheets.
    Jiménez-Salcedo M; Monge M; Tena MT
    Chemosphere; 2020 May; 247():125910. PubMed ID: 32069715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergistic degradation of antibiotic norfloxacin in a novel heterogeneous sonochemical Fe
    Zhou T; Zou X; Wu X; Mao J; Wang J
    Ultrason Sonochem; 2017 Jul; 37():320-327. PubMed ID: 28427639
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidative degradation study on antimicrobial agent ciprofloxacin by electro-Fenton process: kinetics and oxidation products.
    Yahya MSh; Oturan N; El Kacemi K; El Karbane M; Aravindakumar CT; Oturan MA
    Chemosphere; 2014 Dec; 117():447-54. PubMed ID: 25201488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dependence of transformation product formation on pH during photolytic and photocatalytic degradation of ciprofloxacin.
    Salma A; Thoröe-Boveleth S; Schmidt TC; Tuerk J
    J Hazard Mater; 2016 Aug; 313():49-59. PubMed ID: 27054664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanisms for removal of p-nitrophenol from aqueous solution using zero-valent iron.
    Nakatsuji Y; Salehi Z; Kawase Y
    J Environ Manage; 2015 Apr; 152():183-91. PubMed ID: 25662484
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ciprofloxacin degradation in photo-Fenton and photo-catalytic processes: Degradation mechanisms and iron chelation.
    Giri AS; Golder AK
    J Environ Sci (China); 2019 Jun; 80():82-92. PubMed ID: 30952355
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced catalytic degradation of ciprofloxacin with FeS
    Diao ZH; Xu XR; Jiang D; Li G; Liu JJ; Kong LJ; Zuo LZ
    J Hazard Mater; 2017 Apr; 327():108-115. PubMed ID: 28049066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of antibiotic sulfamethoxazole by zero-valent iron under oxic and anoxic conditions: Removal mechanisms in acidic, neutral and alkaline solutions.
    Kobayashi M; Kurosu S; Yamaguchi R; Kawase Y
    J Environ Manage; 2017 Sep; 200():88-96. PubMed ID: 28570939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Phenol removal using zero-valent iron powder in the presence of dissolved oxygen: roles of decomposition by the Fenton reaction and adsorption/precipitation.
    Shimizu A; Tokumura M; Nakajima K; Kawase Y
    J Hazard Mater; 2012 Jan; 201-202():60-7. PubMed ID: 22119308
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A mechanistic study of ciprofloxacin removal by kaolinite.
    Li Z; Hong H; Liao L; Ackley CJ; Schulz LA; MacDonald RA; Mihelich AL; Emard SM
    Colloids Surf B Biointerfaces; 2011 Nov; 88(1):339-44. PubMed ID: 21802909
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zero-valent iron treatment of dark brown colored coffee effluent: Contributions of a core-shell structure to pollutant removals.
    Tomizawa M; Kurosu S; Kobayashi M; Kawase Y
    J Environ Manage; 2016 Dec; 183(Pt 3):478-487. PubMed ID: 27623374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ciprofloxacin adsorption on graphene and granular activated carbon: kinetics, isotherms, and effects of solution chemistry.
    Zhu X; Tsang DC; Chen F; Li S; Yang X
    Environ Technol; 2015; 36(24):3094-102. PubMed ID: 26050736
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient Removal of Ciprofloxacin from Contaminated Water via Polystyrene Anion Exchange Resin with Nanoconfined Zero-Valent Iron.
    Song Y; Zeng Y; Jiang T; Chen J; Du Q
    Nanomaterials (Basel); 2022 Dec; 13(1):. PubMed ID: 36616025
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bentonite for ciprofloxacin removal from aqueous solution.
    Genç N; Can Dogan E; Yurtsever M
    Water Sci Technol; 2013; 68(4):848-55. PubMed ID: 23985515
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nitrogen-deficient g-C
    He R; Xue K; Wang J; Yan Y; Peng Y; Yang T; Hu Y; Wang W
    Chemosphere; 2020 Nov; 259():127465. PubMed ID: 32623202
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Photo-Fenton degradation of the pharmaceuticals ciprofloxacin and fluoxetine after anaerobic pre-treatment of hospital effluent.
    Perini JAL; Silva BCE; Tonetti AL; Nogueira RFP
    Environ Sci Pollut Res Int; 2017 Mar; 24(7):6233-6240. PubMed ID: 27525739
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Degradation of ciprofloxacin in water by advanced oxidation process: kinetics study, influencing parameters and degradation pathways.
    Sayed M; Ismail M; Khan S; Tabassum S; Khan HM
    Environ Technol; 2016; 37(5):590-602. PubMed ID: 26208491
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.