BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

254 related articles for article (PubMed ID: 25150983)

  • 21. Effect of trehalose on a phospholipid membrane under mechanical stress.
    Pereira CS; Hünenberger PH
    Biophys J; 2008 Oct; 95(8):3525-34. PubMed ID: 18599628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Interactions of a bacterial biosurfactant trehalose lipid with phosphatidylserine membranes.
    Ortiz A; Teruel JA; Espuny MJ; Marqués A; Manresa A; Aranda FJ
    Chem Phys Lipids; 2009 Mar; 158(1):46-53. PubMed ID: 19046957
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Molecular Dynamics Simulation Study of Skin Lipids: Effects of the Molar Ratio of Individual Components over a Wide Temperature Range.
    Gupta R; Rai B
    J Phys Chem B; 2015 Sep; 119(35):11643-55. PubMed ID: 26274913
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Relationships between equilibrium spreading pressure and phase equilibria of phospholipid bilayers and monolayers at the air-water interface.
    Mansour HM; Zografi G
    Langmuir; 2007 Mar; 23(7):3809-19. PubMed ID: 17323986
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular Packing, Hydrogen Bonding, and Fast Dynamics in Lysozyme/Trehalose/Glycerol and Trehalose/Glycerol Glasses at Low Hydration.
    Lerbret A; Affouard F
    J Phys Chem B; 2017 Oct; 121(40):9437-9451. PubMed ID: 28920435
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Effect of n-alkanes on lipid bilayers depending on headgroups.
    Hishida M; Endo A; Nakazawa K; Yamamura Y; Saito K
    Chem Phys Lipids; 2015 May; 188():61-7. PubMed ID: 25957868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of polymer grafting on the bilayer gel to liquid-crystalline transition.
    Thakkar FM; Ayappa KG
    J Phys Chem B; 2010 Mar; 114(8):2738-48. PubMed ID: 20143803
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Water replacement hypothesis in atomic detail--factors determining the structure of dehydrated bilayer stacks.
    Golovina EA; Golovin AV; Hoekstra FA; Faller R
    Biophys J; 2009 Jul; 97(2):490-9. PubMed ID: 19619463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A model of hydrogen bond formation in phosphatidylethanolamine bilayers.
    Pink DA; McNeil S; Quinn B; Zuckermann MJ
    Biochim Biophys Acta; 1998 Jan; 1368(2):289-305. PubMed ID: 9459606
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A DSC and FTIR spectroscopic study of the effects of the epimeric 4-cholesten-3-ols and 4-cholesten-3-one on the thermotropic phase behaviour and organization of dipalmitoylphosphatidylcholine bilayer membranes: comparison with their 5-cholesten analogues.
    Benesch MG; Mannock DA; Lewis RN; McElhaney RN
    Chem Phys Lipids; 2014 Jan; 177():71-90. PubMed ID: 24296232
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Experimental and Molecular Dynamics Simulation Study of the Effects of Lignin Dimers on the Gel-to-Fluid Phase Transition in DPPC Bilayers.
    Tong X; Moradipour M; Novak B; Kamali P; Asare SO; Knutson BL; Rankin SE; Lynn BC; Moldovan D
    J Phys Chem B; 2019 Oct; 123(39):8247-8260. PubMed ID: 31487181
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Bilayer phase transitions of N-methylated dioleoylphosphatidylethanolamines under high pressure.
    Kusube M; Goto M; Tamai N; Matsuki H; Kaneshina S
    Chem Phys Lipids; 2006 Jul; 142(1-2):94-102. PubMed ID: 16620796
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dependence of trehalose protective action on the initial phase state of dipalmitoylphosphatidylcholine bilayers.
    Tsvetkova N; Tenchov B; Tsonev L; Tsvetkov T
    Cryobiology; 1988 Jun; 25(3):256-63. PubMed ID: 3396390
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Determination of phase transition temperatures for atomistic models of lipids from temperature-dependent stripe domain growth kinetics.
    Coppock PS; Kindt JT
    J Phys Chem B; 2010 Sep; 114(35):11468-73. PubMed ID: 20690693
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Membrane phase transition during heating and cooling: molecular insight into reversible melting.
    Sun L; Böckmann RA
    Eur Biophys J; 2018 Mar; 47(2):151-164. PubMed ID: 28725998
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Coarse-Grained Molecular Dynamics Simulations of Membrane-Trehalose Interactions.
    Kapla J; Stevensson B; Maliniak A
    J Phys Chem B; 2016 Sep; 120(36):9621-31. PubMed ID: 27530142
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Combined Monte Carlo and molecular dynamics simulation of fully hydrated dioleyl and palmitoyl-oleyl phosphatidylcholine lipid bilayers.
    Chiu SW; Jakobsson E; Subramaniam S; Scott HL
    Biophys J; 1999 Nov; 77(5):2462-9. PubMed ID: 10545348
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interaction of the disaccharides trehalose and gentiobiose with lipid bilayers: a comparative molecular dynamics study.
    Horta BA; Perić-Hassler L; Hünenberger PH
    J Mol Graph Model; 2010 Nov; 29(3):331-46. PubMed ID: 21115286
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Interdigitated gel phase bilayers formed by unsaturated synthetic and bacterial glycerolipids in the presence of polymyxin B and glycerol.
    Boggs JM; Tümmler B
    Biochim Biophys Acta; 1993 Jan; 1145(1):42-50. PubMed ID: 8380717
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Bilayer undulation dynamics in unilamellar phospholipid vesicles: effect of temperature, cholesterol and trehalose.
    Brüning BA; Prévost S; Stehle R; Steitz R; Falus P; Farago B; Hellweg T
    Biochim Biophys Acta; 2014 Oct; 1838(10):2412-9. PubMed ID: 24950248
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.