These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
254 related articles for article (PubMed ID: 25151068)
1. Efficient production of 2,3-butanediol from corn stover hydrolysate by using a thermophilic Bacillus licheniformis strain. Li L; Li K; Wang K; Chen C; Gao C; Ma C; Xu P Bioresour Technol; 2014 Oct; 170():256-261. PubMed ID: 25151068 [TBL] [Abstract][Full Text] [Related]
2. Metabolic engineering of thermophilic Bacillus licheniformis for chiral pure D-2,3-butanediol production. Wang Q; Chen T; Zhao X; Chamu J Biotechnol Bioeng; 2012 Jul; 109(7):1610-21. PubMed ID: 22231522 [TBL] [Abstract][Full Text] [Related]
3. Isolation and Evaluation of Song CW; Rathnasingh C; Park JM; Lee J; Song H J Microbiol Biotechnol; 2018 Mar; 28(3):409-417. PubMed ID: 29212290 [TBL] [Abstract][Full Text] [Related]
4. Lactic Acid Production from Pretreated Hydrolysates of Corn Stover by a Newly Developed Bacillus coagulans Strain. Jiang T; Qiao H; Zheng Z; Chu Q; Li X; Yong Q; Ouyang J PLoS One; 2016; 11(2):e0149101. PubMed ID: 26863012 [TBL] [Abstract][Full Text] [Related]
5. Production of optically pure 2,3-butanediol from Miscanthus floridulus hydrolysate using engineered Bacillus licheniformis strains. Gao Y; Huang H; Chen S; Qi G World J Microbiol Biotechnol; 2018 Apr; 34(5):66. PubMed ID: 29687256 [TBL] [Abstract][Full Text] [Related]
6. Efficient simultaneous saccharification and fermentation of inulin to 2,3-butanediol by thermophilic Bacillus licheniformis ATCC 14580. Li L; Chen C; Li K; Wang Y; Gao C; Ma C; Xu P Appl Environ Microbiol; 2014 Oct; 80(20):6458-64. PubMed ID: 25107977 [TBL] [Abstract][Full Text] [Related]
7. Application of enzymatic apple pomace hydrolysate to production of 2,3-butanediol by alkaliphilic Bacillus licheniformis NCIMB 8059. Białkowska AM; Gromek E; Krysiak J; Sikora B; Kalinowska H; Jędrzejczak-Krzepkowska M; Kubik C; Lang S; Schütt F; Turkiewicz M J Ind Microbiol Biotechnol; 2015 Dec; 42(12):1609-21. PubMed ID: 26445877 [TBL] [Abstract][Full Text] [Related]
8. High-titer lactic acid production from NaOH-pretreated corn stover by Bacillus coagulans LA204 using fed-batch simultaneous saccharification and fermentation under non-sterile condition. Hu J; Zhang Z; Lin Y; Zhao S; Mei Y; Liang Y; Peng N Bioresour Technol; 2015 Apr; 182():251-257. PubMed ID: 25704098 [TBL] [Abstract][Full Text] [Related]
9. Metabolic engineering of Enterobacter cloacae for high-yield production of enantiopure (2R,3R)-2,3-butanediol from lignocellulose-derived sugars. Li L; Li K; Wang Y; Chen C; Xu Y; Zhang L; Han B; Gao C; Tao F; Ma C; Xu P Metab Eng; 2015 Mar; 28():19-27. PubMed ID: 25499652 [TBL] [Abstract][Full Text] [Related]
10. Adaptive laboratory evolution of Klebsiella pneumoniae for improving 2,3-butanediol production. Li H; Zhang G; Dang Y Bioengineered; 2016 Nov; 7(6):432-438. PubMed ID: 27442598 [TBL] [Abstract][Full Text] [Related]
11. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. Ma K; Hu G; Pan L; Wang Z; Zhou Y; Wang Y; Ruan Z; He M Bioresour Technol; 2016 Nov; 219():114-122. PubMed ID: 27479802 [TBL] [Abstract][Full Text] [Related]
12. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass. Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577 [TBL] [Abstract][Full Text] [Related]
13. Enhanced 2,3-butanediol production in fed-batch cultures of free and immobilized Bacillus licheniformis DSM 8785. Jurchescu IM; Hamann J; Zhou X; Ortmann T; Kuenz A; Prüße U; Lang S Appl Microbiol Biotechnol; 2013 Aug; 97(15):6715-23. PubMed ID: 23722266 [TBL] [Abstract][Full Text] [Related]
14. Production of 2,3-butanediol from glucose by GRAS microorganism Bacillus amyloliquefaciens. Yang T; Rao Z; Zhang X; Lin Q; Xia H; Xu Z; Yang S J Basic Microbiol; 2011 Dec; 51(6):650-8. PubMed ID: 21780143 [TBL] [Abstract][Full Text] [Related]
15. Open fermentative production of L-lactic acid by Bacillus sp. strain NL01 using lignocellulosic hydrolyzates as low-cost raw material. Ouyang J; Ma R; Zheng Z; Cai C; Zhang M; Jiang T Bioresour Technol; 2013 May; 135():475-80. PubMed ID: 23127843 [TBL] [Abstract][Full Text] [Related]
16. Bacillus sp. strain P38: an efficient producer of L-lactate from cellulosic hydrolysate, with high tolerance for 2-furfural. Peng L; Wang L; Che C; Yang G; Yu B; Ma Y Bioresour Technol; 2013 Dec; 149():169-76. PubMed ID: 24096283 [TBL] [Abstract][Full Text] [Related]
17. Conversion of acid hydrolysate of oil palm empty fruit bunch to L-lactic acid by newly isolated Bacillus coagulans JI12. Ye L; Hudari MS; Zhou X; Zhang D; Li Z; Wu JC Appl Microbiol Biotechnol; 2013 Jun; 97(11):4831-8. PubMed ID: 23504058 [TBL] [Abstract][Full Text] [Related]
18. Production of ethanol from corn stover hemicellulose hydrolyzate using Pichia stipitis. Agbogbo FK; Wenger KS J Ind Microbiol Biotechnol; 2007 Nov; 34(11):723-7. PubMed ID: 17710458 [TBL] [Abstract][Full Text] [Related]
19. 2,3-Butanediol production using soy-based nitrogen source and fermentation process evaluation by a novel isolate of Das A; Prakash G; Lali AM Prep Biochem Biotechnol; 2021; 51(10):1046-1055. PubMed ID: 33719922 [TBL] [Abstract][Full Text] [Related]
20. Enhanced production of tetramethylpyrazine in Bacillus licheniformis BL1 by bdhA disruption and 2,3-butanediol supplementation. Meng W; Xiao D; Wang R World J Microbiol Biotechnol; 2016 Mar; 32(3):46. PubMed ID: 26873557 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]