These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 25151146)
21. Identification of colorectal cancer related genes with mRMR and shortest path in protein-protein interaction network. Li BQ; Huang T; Liu L; Cai YD; Chou KC PLoS One; 2012; 7(4):e33393. PubMed ID: 22496748 [TBL] [Abstract][Full Text] [Related]
22. Transcriptional network modulated by the prognostic signature transcription factors and their long noncoding RNA partners in primary prostate cancer. Jiang M; Cheng Y; Wang D; Lu Y; Gu S; Wang C; Huang Y; Li Y EBioMedicine; 2021 Jan; 63():103150. PubMed ID: 33279858 [TBL] [Abstract][Full Text] [Related]
23. Key regulators in prostate cancer identified by co-expression module analysis. Jiang J; Jia P; Zhao Z; Shen B BMC Genomics; 2014 Nov; 15():1015. PubMed ID: 25418933 [TBL] [Abstract][Full Text] [Related]
24. Identifying the key genes and microRNAs in colorectal cancer liver metastasis by bioinformatics analysis and in vitro experiments. Zhang T; Guo J; Gu J; Wang Z; Wang G; Li H; Wang J Oncol Rep; 2019 Jan; 41(1):279-291. PubMed ID: 30542696 [TBL] [Abstract][Full Text] [Related]
25. Analysis of tripartite motif (TRIM) family gene expression in prostate cancer bone metastases. Offermann A; Kang D; Watermann C; Weingart A; Hupe MC; Saraji A; Stegmann-Frehse J; Kruper R; Schüle R; Pantel K; Taubert H; Duensing S; Culig Z; Aigner A; Klapper W; Jonigk D; Philipp Kühnel M; Merseburger AS; Kirfel J; Sailer V; Perner S Carcinogenesis; 2021 Dec; 42(12):1475-1484. PubMed ID: 34487169 [TBL] [Abstract][Full Text] [Related]
26. Identifying significant genetic regulatory networks in the prostate cancer from microarray data based on transcription factor analysis and conditional independency. Yeh HY; Cheng SW; Lin YC; Yeh CY; Lin SF; Soo VW BMC Med Genomics; 2009 Dec; 2():70. PubMed ID: 20025723 [TBL] [Abstract][Full Text] [Related]
27. The Identification of Key Gene Expression Signature in Prostate Cancer. Huang Y; Cao Q; Song Z; Ruan H; Wang K; Chen K; Zhang X Crit Rev Eukaryot Gene Expr; 2020; 30(2):153-168. PubMed ID: 32558494 [TBL] [Abstract][Full Text] [Related]
28. Construction and analysis of protein-protein interaction networks based on proteomics data of prostate cancer. Chen C; Shen H; Zhang LG; Liu J; Cao XG; Yao AL; Kang SS; Gao WX; Han H; Cao FH; Li ZG Int J Mol Med; 2016 Jun; 37(6):1576-86. PubMed ID: 27121963 [TBL] [Abstract][Full Text] [Related]
29. Robust gene network analysis reveals alteration of the STAT5a network as a hallmark of prostate cancer. Reddy A; Huang CC; Liu H; Delisi C; Nevalainen MT; Szalma S; Bhanot G Genome Inform; 2010; 24():139-53. PubMed ID: 22081596 [TBL] [Abstract][Full Text] [Related]
30. Bioinformatics analyses of significant genes, related pathways and candidate prognostic biomarkers in glioblastoma. Zhou L; Tang H; Wang F; Chen L; Ou S; Wu T; Xu J; Guo K Mol Med Rep; 2018 Nov; 18(5):4185-4196. PubMed ID: 30132538 [TBL] [Abstract][Full Text] [Related]
31. Identification of key regulators in prostate cancer from gene expression datasets of patients. Mangangcha IR; Malik MZ; Küçük Ö; Ali S; Singh RKB Sci Rep; 2019 Nov; 9(1):16420. PubMed ID: 31712650 [TBL] [Abstract][Full Text] [Related]
32. Integrated bioinformatics analysis for the screening of hub genes and therapeutic drugs in ovarian cancer. Yang D; He Y; Wu B; Deng Y; Wang N; Li M; Liu Y J Ovarian Res; 2020 Jan; 13(1):10. PubMed ID: 31987036 [TBL] [Abstract][Full Text] [Related]
33. Bioinformatics analysis identified hub genes in prostate cancer tumorigenesis and metastasis. Gu P; Yang D; Zhu J; Zhang M; He X Math Biosci Eng; 2021 Apr; 18(4):3180-3196. PubMed ID: 34198380 [TBL] [Abstract][Full Text] [Related]
34. Development and validation of hub genes for lymph node metastasis in patients with prostate cancer. Xu N; Chen SH; Lin TT; Cai H; Ke ZB; Dong RN; Huang P; Li XD; Chen YH; Zheng QS J Cell Mol Med; 2020 Apr; 24(8):4402-4414. PubMed ID: 32130760 [TBL] [Abstract][Full Text] [Related]
35. Network-based analysis of prostate cancer cell lines reveals novel marker gene candidates associated with radioresistance and patient relapse. Seifert M; Peitzsch C; Gorodetska I; Börner C; Klink B; Dubrovska A PLoS Comput Biol; 2019 Nov; 15(11):e1007460. PubMed ID: 31682594 [TBL] [Abstract][Full Text] [Related]
36. Molecular mechanisms underlying gliomas and glioblastoma pathogenesis revealed by bioinformatics analysis of microarray data. Vastrad B; Vastrad C; Godavarthi A; Chandrashekar R Med Oncol; 2017 Sep; 34(11):182. PubMed ID: 28952134 [TBL] [Abstract][Full Text] [Related]
37. Identifying the key genes and microRNAs in prostate cancer bone metastasis by bioinformatics analysis. Zhu Z; Wen Y; Xuan C; Chen Q; Xiang Q; Wang J; Liu Y; Luo L; Zhao S; Deng Y; Zhao Z FEBS Open Bio; 2020 Apr; 10(4):674-688. PubMed ID: 32027093 [TBL] [Abstract][Full Text] [Related]
38. Identification of prognostic markers of high grade prostate cancer through an integrated bioinformatics approach. Huang H; Zhang Q; Ye C; Lv JM; Liu X; Chen L; Wu H; Yin L; Cui XG; Xu DF; Liu WH J Cancer Res Clin Oncol; 2017 Dec; 143(12):2571-2579. PubMed ID: 28849390 [TBL] [Abstract][Full Text] [Related]
39. Identification of potential miRNA-mRNA regulatory network contributing to pathogenesis of HBV-related HCC. Lou W; Liu J; Ding B; Chen D; Xu L; Ding J; Jiang D; Zhou L; Zheng S; Fan W J Transl Med; 2019 Jan; 17(1):7. PubMed ID: 30602391 [TBL] [Abstract][Full Text] [Related]
40. Identification of candidate biomarkers and pathways associated with SCLC by bioinformatics analysis. Wen P; Chidanguro T; Shi Z; Gu H; Wang N; Wang T; Li Y; Gao J Mol Med Rep; 2018 Aug; 18(2):1538-1550. PubMed ID: 29845250 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]