These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 2515115)

  • 1. Primary structure of bacteriophage M2 DNA polymerase: conserved segments within protein-priming DNA polymerases and DNA polymerase I of Escherichia coli.
    Matsumoto K; Takano H; Kim CI; Hirokawa H
    Gene; 1989 Dec; 84(2):247-55. PubMed ID: 2515115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Aphidicolin-resistant mutants of bacteriophage phi 29: genetic evidence for altered DNA polymerase.
    Matsumoto K; Kim CI; Urano S; Ohashi M; Hirokawa H
    Virology; 1986 Jul; 152(1):32-8. PubMed ID: 3087058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Aphidicolin resistance in herpes simplex virus type I reveals features of the DNA polymerase dNTP binding site.
    Hall JD; Wang YS; Pierpont J; Berlin MS; Rundlett SE; Woodward S
    Nucleic Acids Res; 1989 Nov; 17(22):9231-44. PubMed ID: 2555788
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A general structure for DNA-dependent DNA polymerases.
    Blanco L; Bernad A; Blasco MA; Salas M
    Gene; 1991 Apr; 100():27-38. PubMed ID: 2055476
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The DNA polymerase-encoding gene of Bacillus subtilis bacteriophage SPO1.
    Scarlato V; Gargano S
    Gene; 1992 Sep; 118(1):109-13. PubMed ID: 1324872
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aphidicolin-resistant DNA polymerase of bacteriophage phi 29 APHr71 mutant is hypersensitive to phosphonoacetic acid and butylphenyldeoxyguanosine 5'-triphosphate.
    Matsumoto K; Kim CI; Kobayashi H; Kanehiro H; Hirokawa H
    Virology; 1990 Sep; 178(1):337-9. PubMed ID: 2117830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-assisted primary and secondary structure analyses of DNA polymerases of herpes simplex, Epstein-Barr and varicella zoster viruses reveal conserved domains with some homology to DNA-binding domain in E. coli DNA pol I.
    Becker Y
    Virus Genes; 1988 Jul; 1(4):351-67. PubMed ID: 2852411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The complete nucleotide sequence of the left very early region of Escherichia coli bacteriophage PRD1 coding for the terminal protein and the DNA polymerase.
    Savilahti H; Bamford DH
    Gene; 1987; 57(1):121-30. PubMed ID: 3322943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nucleotide sequence and transcription of the left early region of Streptococcus pneumoniae bacteriophage Cp-1 coding for the terminal protein and the DNA polymerase.
    Martín AC; López R; García P
    Virology; 1995 Aug; 211(1):21-32. PubMed ID: 7645213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-directed mutagenesis of the YCDTDS amino acid motif of the phi 29 DNA polymerase.
    Bernad A; Blanco L; Salas M
    Gene; 1990 Sep; 94(1):45-51. PubMed ID: 2121621
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineered herpes simplex virus DNA polymerase point mutants: the most highly conserved region shared among alpha-like DNA polymerases is involved in substrate recognition.
    Marcy AI; Hwang CB; Ruffner KL; Coen DM
    J Virol; 1990 Dec; 64(12):5883-90. PubMed ID: 2173770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protein-primed replication of bacteriophage phi 29 DNA.
    Salas M; Martín G; Bernad A; Garmendia C; Lázaro JM; Zaballos A; Serrano M; Otero MJ; Gutiérrez J; Parés E
    Biochim Biophys Acta; 1988 Dec; 951(2-3):419-24. PubMed ID: 3207763
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phi 29 DNA polymerase active site. The conserved amino acid motif "Kx3NSxYG" is involved in template-primer binding and dNTP selection.
    Blasco MA; Lázaro JM; Blanco L; Salas M
    J Biol Chem; 1993 Aug; 268(22):16763-70. PubMed ID: 8344956
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A self-splicing group I intron in the DNA polymerase gene of Bacillus subtilis bacteriophage SPO1.
    Goodrich-Blair H; Scarlato V; Gott JM; Xu MQ; Shub DA
    Cell; 1990 Oct; 63(2):417-24. PubMed ID: 2119891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Escherichia coli DNA polymerase II is homologous to alpha-like DNA polymerases.
    Iwasaki H; Ishino Y; Toh H; Nakata A; Shinagawa H
    Mol Gen Genet; 1991 Apr; 226(1-2):24-33. PubMed ID: 2034216
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Primer terminus stabilization at the phi 29 DNA polymerase active site. Mutational analysis of conserved motif KXY.
    Blasco MA; Méndez J; Lázaro JM; Blanco L; Salas M
    J Biol Chem; 1995 Feb; 270(6):2735-40. PubMed ID: 7852344
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phi 29 DNA polymerase active site. Mutants in conserved residues Tyr254 and Tyr390 are affected in dNTP binding.
    Blasco MA; Lázaro JM; Bernad A; Blanco L; Salas M
    J Biol Chem; 1992 Sep; 267(27):19427-34. PubMed ID: 1527062
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural and functional relationships between prokaryotic and eukaryotic DNA polymerases.
    Bernad A; Zaballos A; Salas M; Blanco L
    EMBO J; 1987 Dec; 6(13):4219-25. PubMed ID: 3127204
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Primer protein of bacteriophage M2 exposes the RGD receptor site upon linking the first deoxynucleotide.
    Kobayashi H; Kitabayashi K; Matsumoto K; Hirokawa H
    Mol Gen Genet; 1991 Apr; 226(1-2):65-9. PubMed ID: 2034231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bacteriophage PRD1 DNA polymerase: evolution of DNA polymerases.
    Jung GH; Leavitt MC; Hsieh JC; Ito J
    Proc Natl Acad Sci U S A; 1987 Dec; 84(23):8287-91. PubMed ID: 3479792
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.