These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 25151172)

  • 1. Bimolecular fluorescence complementation (BiFC) in live Drosophila embryos.
    Duffraisse M; Hudry B; Merabet S
    Methods Mol Biol; 2014; 1196():307-18. PubMed ID: 25151172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Visualization of protein interactions in living Drosophila embryos by the bimolecular fluorescence complementation assay.
    Hudry B; Viala S; Graba Y; Merabet S
    BMC Biol; 2011 Jan; 9():5. PubMed ID: 21276241
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generation of a versatile BiFC ORFeome library for analyzing protein-protein interactions in live
    Bischof J; Duffraisse M; Furger E; Ajuria L; Giraud G; Vanderperre S; Paul R; Björklund M; Ahr D; Ahmed AW; Spinelli L; Brun C; Basler K; Merabet S
    Elife; 2018 Sep; 7():. PubMed ID: 30247122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bimolecular Fluorescence Complementation (BiFC) in Tissue Culture and in Developing Tissues of Drosophila to Study Protein-Protein Interactions.
    Matsui Y; Lai ZC
    Methods Mol Biol; 2019; 1893():75-85. PubMed ID: 30565126
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hox proteins display a common and ancestral ability to diversify their interaction mode with the PBC class cofactors.
    Hudry B; Remacle S; Delfini MC; Rezsohazy R; Graba Y; Merabet S
    PLoS Biol; 2012; 10(6):e1001351. PubMed ID: 22745600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visualizing protein interactions by bimolecular fluorescence complementation in Xenopus.
    Saka Y; Hagemann AI; Smith JC
    Methods; 2008 Jul; 45(3):192-5. PubMed ID: 18586100
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bimolecular fluorescence complementation (BiFC): a 5-year update and future perspectives.
    Kodama Y; Hu CD
    Biotechniques; 2012 Nov; 53(5):285-98. PubMed ID: 23148879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In Vivo Imaging of Protein Interactions in the Germplasm with Bimolecular Fluorescent Complementation.
    Perera RP; Dosch R
    Methods Mol Biol; 2021; 2218():303-317. PubMed ID: 33606241
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bimolecular fluorescence complementation (BiFC) analysis of protein-protein interaction: how to calculate signal-to-noise ratio.
    Kodama Y; Hu CD
    Methods Cell Biol; 2013; 113():107-21. PubMed ID: 23317900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hox transcriptomics in Drosophila embryos.
    Polychronidou M; Lohmann I
    Methods Mol Biol; 2014; 1196():197-208. PubMed ID: 25151165
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Utilizing bimolecular fluorescence complementation (BiFC) to assay protein-protein interaction in plants.
    Ohad N; Yalovsky S
    Methods Mol Biol; 2010; 655():347-58. PubMed ID: 20734272
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bimolecular Fluorescence Complementation to Visualize Protein-Protein Interactions in Human Cells Based on Gateway Cloning Technology.
    Lepur A; Vugrek O
    Methods Mol Biol; 2018; 1794():259-267. PubMed ID: 29855963
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel pair of split venus fragments to detect protein-protein interactions by in vitro and in vivo bimolecular fluorescence complementation assays.
    Ohashi K; Mizuno K
    Methods Mol Biol; 2014; 1174():247-62. PubMed ID: 24947387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibitory activities of short linear motifs underlie Hox interactome specificity in vivo.
    Baëza M; Viala S; Heim M; Dard A; Hudry B; Duffraisse M; Rogulja-Ortmann A; Brun C; Merabet S
    Elife; 2015 Apr; 4():. PubMed ID: 25869471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Detection of protein-protein interaction using bimolecular fluorescence complementation assay.
    Pham CD
    Methods Mol Biol; 2015; 1278():483-95. PubMed ID: 25859971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of protein interactions during virus infection by bimolecular fluorescence complementation.
    Becker S; von Einem J
    Methods Mol Biol; 2013; 1064():29-41. PubMed ID: 23996248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological organization of Drosophila Hox genes using DNA fluorescent in situ hybridization.
    Bantignies F; Cavalli G
    Methods Mol Biol; 2014; 1196():103-20. PubMed ID: 25151160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel far-red bimolecular fluorescence complementation system that allows for efficient visualization of protein interactions under physiological conditions.
    Chu J; Zhang Z; Zheng Y; Yang J; Qin L; Lu J; Huang ZL; Zeng S; Luo Q
    Biosens Bioelectron; 2009 Sep; 25(1):234-9. PubMed ID: 19596565
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bimolecular Fluorescence Complementation (BiFC) Analysis of Protein-Protein Interactions and Assessment of Subcellular Localization in Live Cells.
    Pratt EP; Owens JL; Hockerman GH; Hu CD
    Methods Mol Biol; 2016; 1474():153-70. PubMed ID: 27515079
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicolor bimolecular fluorescence complementation (BiFC) analysis of protein interactions with alternative partners.
    Kerppola TK
    Cold Spring Harb Protoc; 2013 Sep; 2013(9):798-803. PubMed ID: 24003202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.