BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 25151549)

  • 1. Physicochemical characterization of D-mannitol polymorphs: the challenging surface energy determination by inverse gas chromatography in the infinite dilution region.
    Cares-Pacheco MG; Vaca-Medina G; Calvet R; Espitalier F; Letourneau JJ; Rouilly A; Rodier E
    Int J Pharm; 2014 Nov; 475(1-2):69-81. PubMed ID: 25151549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse gas chromatography a tool to follow physicochemical modifications of pharmaceutical solids: Crystal habit and particles size surface effects.
    Cares-Pacheco MG; Calvet R; Vaca-Medina G; Rouilly A; Espitalier F
    Int J Pharm; 2015 Oct; 494(1):113-26. PubMed ID: 26248145
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Effect of Polymorphism on Surface Energetics of D-Mannitol Polymorphs.
    Smith RR; Shah UV; Parambil JV; Burnett DJ; Thielmann F; Heng JY
    AAPS J; 2017 Jan; 19(1):103-109. PubMed ID: 27631557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of surface heterogeneity of D-mannitol by sessile drop contact angle and finite concentration inverse gas chromatography.
    Ho R; Hinder SJ; Watts JF; Dilworth SE; Williams DR; Heng JY
    Int J Pharm; 2010 Mar; 387(1-2):79-86. PubMed ID: 20006691
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Particle size dependence of polymorphism in spray-dried mannitol.
    Lee YY; Wu JX; Yang M; Young PM; van den Berg F; Rantanen J
    Eur J Pharm Sci; 2011 Sep; 44(1-2):41-8. PubMed ID: 21699976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Application of molecular modelling to determine the surface energy of mannitol.
    Saxena A; Kendrick J; Grimsey I; Mackin L
    Int J Pharm; 2007 Oct; 343(1-2):173-80. PubMed ID: 17714893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Characterization of drug particle surface energetics and young's modulus by atomic force microscopy and inverse gas chromatography.
    Davies M; Brindley A; Chen X; Marlow M; Doughty SW; Shrubb I; Roberts CJ
    Pharm Res; 2005 Jul; 22(7):1158-66. PubMed ID: 16028017
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interpretation of the differences in the surface energetics of two optical forms of mannitol by inverse gas chromatography and molecular modelling.
    Grimsey IM; Sunkersett M; Osborn JC; York P; Rowe RC
    Int J Pharm; 1999 Nov; 191(1):43-50. PubMed ID: 10556739
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Energy Determined by Inverse Gas Chromatography as a Tool to Investigate Particulate Interactions in Dry Powder Inhalers.
    Das SC; Tucker IG; Stewart PJ
    Curr Pharm Des; 2015; 21(27):3932-44. PubMed ID: 26290201
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of surface energy distributions by inverse gas chromatography to understand mechanofusion processing and functionality of lactose coated with magnesium stearate.
    Das SC; Zhou Q; Morton DA; Larson I; Stewart PJ
    Eur J Pharm Sci; 2011 Jul; 43(4):325-33. PubMed ID: 21621612
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterising surface energy of pharmaceutical powders by inverse gas chromatography at finite dilution.
    Das SC; Stewart PJ
    J Pharm Pharmacol; 2012 Sep; 64(9):1337-48. PubMed ID: 22881445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The enhanced aerosol performance of salbutamol from dry powders containing engineered mannitol as excipient.
    Kaialy W; Martin GP; Ticehurst MD; Momin MN; Nokhodchi A
    Int J Pharm; 2010 Jun; 392(1-2):178-88. PubMed ID: 20363301
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The characterization and comparison of spray-dried mannitol samples.
    Hulse WL; Forbes RT; Bonner MC; Getrost M
    Drug Dev Ind Pharm; 2009 Jun; 35(6):712-8. PubMed ID: 19514986
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inverse gas chromatography: considerations about appropriate use for amorphous and crystalline powders.
    Planinsek O; Buckton G
    J Pharm Sci; 2003 Jun; 92(6):1286-94. PubMed ID: 12761817
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of interparticle structuring on the surface energetics of a binary powder system.
    Karde V; Guo M; Heng JYY
    Int J Pharm; 2020 May; 581():119295. PubMed ID: 32247815
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Inverse gas chromatographic method for measuring the dispersive surface energy distribution for particulates.
    Ylä-Mäihäniemi PP; Heng JY; Thielmann F; Williams DR
    Langmuir; 2008 Sep; 24(17):9551-7. PubMed ID: 18680326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of surface modification on wettability and surface energy characteristics of pharmaceutical excipient powders.
    Karde V; Ghoroi C
    Int J Pharm; 2014 Nov; 475(1-2):351-63. PubMed ID: 25195729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative analysis of mannitol polymorphs. FT-Raman spectroscopy.
    Campbell Roberts SN; Williams AC; Grimsey IM; Booth SW
    J Pharm Biomed Anal; 2002 Jun; 28(6):1135-47. PubMed ID: 12049978
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Origins of the Relative Stabilities of Anhydrous and Hydrated d-Mannitol Crystals.
    Dierks TM; Korter TM
    J Phys Chem A; 2016 Aug; 120(33):6629-36. PubMed ID: 27463148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Holistic Multi Evidence Approach to Study the Fragmentation Behaviour of Crystalline Mannitol.
    Koner JS; Rajabi-Siahboomi A; Bowen J; Perrie Y; Kirby D; Mohammed AR
    Sci Rep; 2015 Nov; 5():16352. PubMed ID: 26553127
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.