BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25151623)

  • 41. Locomotion after spinal cord injury depends on constitutive activity in serotonin receptors.
    Fouad K; Rank MM; Vavrek R; Murray KC; Sanelli L; Bennett DJ
    J Neurophysiol; 2010 Dec; 104(6):2975-84. PubMed ID: 20861436
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Postnatal development of locomotor movements in normal and para-chlorophenylalanine-treated newborn rats.
    Myoga H; Nonaka S; Matsuyama K; Mori S
    Neurosci Res; 1995 Jan; 21(3):211-21. PubMed ID: 7753502
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quipazine and light have similar effects on c-fos induction in the rat suprachiasmatic nucleus.
    Moyer RW; Kennaway DJ; Ferguson SA; Dijstelbloem YP
    Brain Res; 1997 Aug; 765(2):337-42. PubMed ID: 9313909
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Neonatal +-methamphetamine exposure in rats alters adult locomotor responses to dopamine D1 and D2 agonists and to a glutamate NMDA receptor antagonist, but not to serotonin agonists.
    Graham DL; Amos-Kroohs RM; Braun AA; Grace CE; Schaefer TL; Skelton MR; Williams MT; Vorhees CV
    Int J Neuropsychopharmacol; 2013 Mar; 16(2):377-91. PubMed ID: 22391043
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Locomotor recovery in the chronic spinal rat: effects of long-term treatment with a 5-HT2 agonist.
    Antri M; Orsal D; Barthe JY
    Eur J Neurosci; 2002 Aug; 16(3):467-76. PubMed ID: 12193190
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Serotonin and the mammalian circadian system: I. In vitro phase shifts by serotonergic agonists and antagonists.
    Prosser RA; Dean RR; Edgar DM; Heller HC; Miller JD
    J Biol Rhythms; 1993; 8(1):1-16. PubMed ID: 8490207
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Removal of supraspinal input reveals a difference in the flexor and extensor monosynaptic reflex response to quipazine independent of motoneuron excitation.
    Chopek JW; MacDonell CW; Power KE; Gardiner K; Gardiner PF
    J Neurophysiol; 2013 Apr; 109(8):2056-63. PubMed ID: 23365181
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Serotoninergic system morphofunctional aspects in control of postural and locomotion function].
    Gerasimenko IuP; Moshonkina TR; Pavlova NV; Tomilovskaia ES; Kozlovskaia IB
    Ross Fiziol Zh Im I M Sechenova; 2012 Dec; 98(12):1595-603. PubMed ID: 23461203
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Drug and environmentally induced manipulations of the opiate and serotonergic systems alter nociception in neonatal rat pups.
    Spear LP; Enters EK; Aswad MA; Louzan M
    Behav Neural Biol; 1985 Jul; 44(1):1-22. PubMed ID: 3841749
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The comparative roles of dopaminergic and serotonergic mechanisms in mediating quipazine induced locomotor activity.
    Feigenbaum JJ; Yanai J; Klawans HL
    J Neural Transm; 1982; 54(3-4):145-51. PubMed ID: 7130970
    [No Abstract]   [Full Text] [Related]  

  • 51. Local effects of the serotonin agonist quipazine on the suprachiasmatic nucleus of rats.
    Kalkowski A; Wollnik F
    Neuroreport; 1999 Oct; 10(15):3241-6. PubMed ID: 10574568
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Long-lasting recovery of locomotor function in chronic spinal rat following chronic combined pharmacological stimulation of serotonergic receptors with 8-OHDPAT and quipazine.
    Antri M; Barthe JY; Mouffle C; Orsal D
    Neurosci Lett; 2005 Aug 12-19; 384(1-2):162-7. PubMed ID: 15905027
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Daily passive cycling attenuates the hyperexcitability and restores the responsiveness of the extensor monosynaptic reflex to quipazine in the chronic spinally transected rat.
    Chopek JW; MacDonell CW; Gardiner K; Gardiner PF
    J Neurotrauma; 2014 Jun; 31(12):1083-7. PubMed ID: 24484172
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Quipazine Elicits Swallowing in the Arterially Perfused Rat Preparation: A Role for Medullary Raphe Nuclei?
    Bergé-Laval V; Gestreau C
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698469
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The quipazine- and TFMPP-increased conditioned avoidance response in rats: role of 5HT1C/5-HT2 receptors.
    Alhaider AA; Ageel AM; Ginawi OT
    Neuropharmacology; 1993 Dec; 32(12):1427-32. PubMed ID: 8152532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Time- and dose-dependent effects of the serotonergic agent quipazine on regional cerebral metabolism in rats.
    Freo U; Ricchieri GL; Holloway HW; Soncrant TT
    Brain Res; 1993 Jan; 600(2):249-56. PubMed ID: 8435750
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transformation of nonfunctional spinal circuits into functional states after the loss of brain input.
    Courtine G; Gerasimenko Y; van den Brand R; Yew A; Musienko P; Zhong H; Song B; Ao Y; Ichiyama RM; Lavrov I; Roy RR; Sofroniew MV; Edgerton VR
    Nat Neurosci; 2009 Oct; 12(10):1333-42. PubMed ID: 19767747
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Serotonin agonists mimic the phase shifting effects of light on the melatonin rhythm in rats.
    Kennaway DJ; Rowe SA; Ferguson SA
    Brain Res; 1996 Oct; 737(1-2):301-7. PubMed ID: 8930380
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Decreased hypothalamic epinephrine concentration by quipazine and other serotonin agonists in rats.
    Hemrick-Luecke SK; Fuller RW
    Biochem Pharmacol; 1995 Jan; 49(3):323-7. PubMed ID: 7857319
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Role of NMDA receptor activation in serotonin agonist-induced air-stepping in paraplegic mice.
    Guertin PA
    Spinal Cord; 2004 Mar; 42(3):185-90. PubMed ID: 14758350
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.